3.1. Closed Answer questions.

1. Are $\ell^{2}(\mathbb{N})$ and $\ell^{2}(\mathbb{Z})$ isometrically isomorphic as Hilbert spaces?
2. Is $C^{1} \cap L^{2}\left(\mathbb{R}^{d}\right)$ dense in $L^{2}\left(\mathbb{R}^{d}\right)$?
3. If $P_{K_{1}}, P_{K_{2}}$ are the metric projections onto two convex closed sets K_{1}, K_{2} in some Hilbert space H, is it true that $P_{K_{1} \cap K_{2}}=P_{K_{1}} \circ P_{K_{2}}$?
4. Given $u \in L^{2}(0,1)$ there exist a unique polynomial \bar{p} such that $p \mapsto\|u-p\|_{L^{2}(0,1)}$ is minimal. True or false?
3.2. Projection on subspaces. For each of the following pairs (H, V) where H is an Hilbert space and V is a subspace discuss whether V is closed or not and give a formula for the orthogonal projection $\pi: H \rightarrow \bar{V}$. Footnotes contain hints.
5. $H=L^{2}(\Omega, \mathcal{F}, \mu)$ with $\mu(\Omega)<\infty$, and $V=\{u \in H: u \equiv \text { const. } \mu \text {-a.e. }\}^{1}$.
6. $H=L^{2}(-1,1)$ and $V=\left\{u \in H: u \text { is } \mathcal{M}_{\text {sym }} \text {-measurable }\right\}^{2}$ where the σ-algebra $\mathcal{M}_{\text {sym }}$ is the σ-algebra generated by
$\{E$ Lebesgue measurable and $E=-E\}$.
7. $H=L^{2}(0,1)$ and $V=\mathbb{R} \log x .^{3}$
8. $H=L^{2}\left(\mathbb{R}^{3} ; \mathbb{R}^{3}\right)$ and $V=\left\{\vec{u} \in H: \vec{x} \cdot \vec{u}(x)=0\right.$ for a.e. $\left.x \in \mathbb{R}^{3}\right\}$. ${ }^{4}$
9. $H=L^{2}\left(\mathbb{R}^{d}\right)$ and V is the subspace of radial functions i.e.,

$$
V=\left\{u \in H: \exists U \in L_{l o c}^{1}(0, \infty) \text { such that } u(x)=U(|x|) \text { for a.e. } x \in \mathbb{R}^{d}\right\}^{5}
$$

3.3. Projection on convex sets. For each of the following pairs (H, K) where H is an Hilbert space and K is a convex set (check it, if it is not clear) discuss whether K is closed or not and give a formula for the metric projection $\pi: H \rightarrow \bar{K}$.

1. $H=L^{2}(0,1)$ and $K=\{u \in H: u>0$ a.e. $\}$.
2. $H=L^{2}(0,2 \pi)$ and $K=\{u \in H: u \geq \sin (\cdot)$ a.e. $\}$.
3. $H=\mathbb{R}^{2}$ and $K=[-1,1] \times[-1,1]$.
4. $H=L^{2}(0,1)$ and $K=\left\{u \in H: \int_{0}^{1} u \phi \leq 0\right\}$, where $\phi \in L^{2}$ is given.
3.4. The tight fishball. Let H be a real Hilbert space and $U \subset H$ be a bounded, nonempty set. Show that, among all the closed balls which contain U, there is only one with minimal radius. ${ }^{6}$
[^0]
[^0]: ${ }^{1}$ You can use the definition, and minimize the function $\mathbb{R} \ni t \mapsto f_{\Omega}|u(x)-t|^{2} d \mu$
 ${ }^{2}$ There is a simpler characterization of $V \ldots$
 ${ }^{3}$ Here, as in item $1, V$ has dimension 1.
 ${ }^{4}$ Everything is happening in the co-domain, so you can use the definition...
 ${ }^{5}$ Work in polar coordinates and use item 1. on each spherical shell.
 ${ }^{6}$ Look at a sequence of minimizing balls $B_{r_{k}}\left(x_{k}\right)$ and try to prove that $\left\{x_{k}\right\}$ is Cauchy with the parallelogram identity. It helps to do a picture in 2 D , i.e. work out the case $H=\mathbb{R}^{2}$ first.

