4.1. Closed answer questions.

1. In order to prove that a linear map $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ is continuous it is enough to prove that $\|T u\|_{L^{2}(\mathbb{R})} \leq 100$, provided $u \in L^{2}(\mathbb{R})$ and $\|u\|_{L^{2}(\mathbb{R})} \leq 7$. True or false?
2. Give an example of a nonzero continuous linear functional on $L^{2}(0,1)$.
3. Alice is given a bounded linear functional $\phi \in L^{2}(0,1)^{*}$, and Bob is given a bounded linear functional $\psi \in L^{2}(0,1)^{*}$. They check that $\phi(u)=\psi(u)$ for all $u \in C([0,1])$. Is it necessarily true that $\phi=\psi$?
4. If ϕ is a continuous linear functional on an Hilbert space H, then $\operatorname{ker} \phi$ is a closed vector subspace of H. True or false?
5. The inequality " $\left\|\left(u_{k}\right)\right\|_{\ell^{2}(\mathbb{N})} \leq\left\|\left(u_{k}\right)\right\|_{\ell^{1}(\mathbb{N})}$ for all sequences $\left(u_{k}\right)$ ", can be equivalently phrased as "the inclusion $\ell^{1}(\mathbb{N}) \hookrightarrow \ell^{2}(\mathbb{N})$ is 1-Lipschitz". True or false?
4.2. Norm of the multiplication operator. For $u \in H:=L^{2}(0,1)$ consider the operator

$$
M_{a}: u(x) \mapsto a(x) u(x),
$$

where $a:(0,1) \rightarrow \mathbb{R}$ is a given measurable function. We want to prove that M_{a} is continuous from H in itself if and only if $a \in L^{\infty}(0,1)$, in which case $\left\|M_{a}\right\|_{\mathcal{L}(H)}=\|a\|_{L^{\infty}(0,1)}$.

1. Given for granted the claim, $\left\|M_{\exp }\right\|_{\mathcal{L}(H)}=\ldots$?
2. Prove the inequality

$$
\int_{0}^{1} a^{2}(x) u^{2}(x) d x \leq \sup _{(0,1)}|a|^{2} \int_{0}^{1} u^{2}(x) d x
$$

and deduce that $\left\|M_{a}\right\|_{\mathcal{L}(H)} \leq\|a\|_{L^{\infty}(0,1)}$.
3. Show that if $E \subset(0,1)$ is measurable with $|E|>0$, then

$$
\frac{\left\|M_{a} \mathbf{1}_{E}\right\|_{L^{2}(0,1)}^{2}}{\left\|\mathbf{1}_{E}\right\|_{L^{2}(0,1)}^{2}}=\frac{1}{|E|} \int_{E} a^{2}(x) d x .
$$

4. Choosing properly the measurable set E in the previous point ${ }^{1}$, prove that $\left\|M_{a}\right\|_{\mathcal{L}(H)} \geq$ $\|a\|_{L^{\infty}}$.

[^0]4.3. Bounded Linear Operators I. Prove that each of the following linear operators is bounded from $\ell^{2}(\mathbb{N})$ in itself ${ }^{2}$. Draw the infinite matrix that represents each of them.

1. (Shift operator) $S:\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(0, u_{0}, u_{1}, \ldots\right)$.
2. (Diagonal matrix) $M_{\lambda}:\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(\lambda_{0} u_{0}, \lambda_{1} u_{1}, \lambda_{2} u_{2}, \ldots\right)$, where $\left\{\lambda_{j}\right\}_{j \geq 0}$ is some given sequence such that $\sup _{j \geq 0}\left|\lambda_{j}\right|=7$.
3. $T:\left(u_{0}, u_{1}, u_{2}, \ldots\right) \mapsto\left(u_{0}-u_{1}, u_{1}-u_{2}, u_{2}-u_{3}, \ldots\right)$.
4. (Hilbert-Schmidt matrix) For each $k \geq 0$ set $(A u)_{k}:=\sum_{j \geq 0} A_{k, j} u_{j}$, where the infinite matrix $\left\{A_{i, j}\right\}_{i \geq 0, j \geq 0}$ satisfies ${ }^{3}$

$$
\sum_{i, j}\left|A_{i, j}\right|^{2}<+\infty .
$$

4.4. Bounded linear operators II. Prove the following inequalities and interpret them as the continuity of a suitable linear map between suitable normed vector spaces:

1. For all $u \in L^{2}(\mathbb{R})$ it holds

$$
\int_{0}^{1} u^{2}(t) d t \leq \int_{\mathbb{R}} u^{2}(t) d t
$$

2. For each polynomial $p(X)=p_{0}+p_{1} X+\ldots+P_{k} X^{N}$ it holds

$$
\max _{x \in[-1,1]}|p(x)| \leq \sum_{j=0}^{N}\left|p_{j}\right| .
$$

3. For all $u \in C^{1}([0,1])$ with $u(0)=0$ it holds ${ }^{4}$

$$
\max _{x \in[0,1]}|u(x)| \leq \int_{0}^{1}\left|u^{\prime}(t)\right| d t .
$$

[^1]
[^0]: ${ }^{1}$ Hint: try with $E=$ "the set where $|a|$ is large"..

[^1]: ${ }^{2}$ Concretely, you have to establish that the ℓ^{2} size of the image of any sequence $\left(u_{k}\right)$ is bounded by a multiple of the ℓ^{2} size of $\left(u_{k}\right)$ itself.
 ${ }^{3}$ Hint: for each k : $\left(\sum_{j \geq 0} A_{k, j} u_{j}\right)^{2} \leq\left(\sum_{j \geq 0} A_{k, j}^{2}\right)\left(\sum_{j \geq 0} u_{j}^{2}\right)$, by Cauchy Schwarz...
 ${ }^{4}$ Hint: use the fundamental Theorem of Calculus, i.e., that a function is the integral of its derivative...

