Recall that if $f \in L^1((-\pi, \pi), \mathbb{C})$ and $k \in \mathbb{Z}$ then the k^{th} Fourier coefficient is the complex number defined by

$$c_k(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx.$$

Hints for the exercises in the next page!

5.1. Closed answer questions.

- 1. Is the unit ball of $L^{\infty}(0,1)$ closed in the $L^{2}(0,1)$ topology?
- 2. Let $V \subset H$ be a closed subspace, $u \in H$, $\tilde{u} \in V$ and assume

$$\langle u - \tilde{u}, v - \tilde{u} \rangle = 0 \text{ for all } v \in D,$$
 (1)

where $D \subset V$ is dense. Is it true that $\tilde{u} = P_V(u)$?

3. Is the inclusion map

$$\iota \colon (L^{\infty}(0,1), \|\cdot\|_{L^{1}(0,1)}) \to (L^{\infty}(0,1), \|\cdot\|_{L^{2}(0,1)}), \quad u \mapsto u,$$

bounded?

- 4. Let p(X, Y) be a polynomial in two variables and let $f(x) := p(\cos(x), \sin(x))$. If it true that $c_k(f) \neq 0$ only for finitely many values of k? (I.e., is f a trigonometric polynomial?)
- 5. Compute the Fourier series of $e^{-|x|}$ and $\sin(x/3)$ (they are not particularly nice, but try to get the computation right!).

5.2. Legendre polynomials III.

- 1. Using the Stone-Weierstrass Theorem, prove that polynomial functions are dense in $L^2(-1, 1)$.
- 2. Recall the Legendre polynomials $P_k(x) := D^k((x^2 1)^k)$. Show that $\operatorname{span}\{P_k\}_{k \in \mathbb{N}} = \operatorname{span}\{x^k\}_{k \in \mathbb{N}}$, so by the previous point Legendre polynomials have dense span. Hence, combining this with exercise 2.4, they form a complete orthogonal system.

5.3. Fourier series of x^m .

- 1. Show that $c_k(1) = \sin(\pi k)/(\pi k)$ for all $k \in \mathbb{Z} \setminus \{0\}$. Notice that the identity holds also for all $k \in \mathbb{R}$ (including k = 0!).
- 2. Consider $k \mapsto c_k(f)$ as a function of $k \in \mathbb{R}$, for a fixed function $f \in L^1(-\pi, \pi)$. Show the identity $c_k(xf) = i \frac{d}{dk} c_k(f)$.
- 3. Compute for each $m \in \mathbb{N}$ the Fourier series of x^m .

Hints:

- 5.1.1 The answer is positive. Use the sequential characterization of closeness, and the fact that if a sequence converges in L^2 , then an appropriate subsequence converges a.e. (this is Theorem 2.4.4 in Da Lio's notes).
- 5.1.2 The answer is positive. Thanks to the theory, what is missing in order to characterize \tilde{u} as $P_V(u)$ is that (1) should hold for all $v \in H$ rather than all $v \in D$, but D is dense...
- 5.1.3 The answer is negative. Try to build functions for which the L^1 norm stays bounded, while the L^2 norm explodes...
- 5.1.4 The answer is positive. Recall the identity $2\cos(x) = e^{ix} + e^{-ix}$, and use it to express $\cos(x)^m$...
- 5.2.1 Mimic the proof of the completeness of the Fourier basis, as was done in class. In this case it is actually simpler!
- 5.2.2 One inclusion is easy, for the other one show inductively on N that

$$x^N \in \operatorname{span}\{P_0, P_1, \dots, P_N\}.$$

In order to do so, notice that $P_k(x) = \frac{(2k)!}{k!}x^k + \{\text{lower order terms}\},\$ so the leading-order coefficient on P_N is nonzero...

- 5.3.2 Write the definition of $c_k(f)$ and commute the derivative in k with the integral in x.
- 5.3.3 Use 5.3.1, 5.3.2 and the analytic expansion $\sin(z) = \sum_{\ell=0}^{\infty} \frac{(-1)^{\ell} z^{2\ell+1}}{(2\ell+1)!}$. Recall that the N^{th} derivative of a function is N! times the N^{th} coefficient of its analytic expansion.