Hints in the next page!

6.1. Closed answer / quick questions.

1. Let $(H,\langle\cdot, \cdot\rangle)$ be an Hilbert space and $V \subset H$ a proper dense subspace. Can $(V,\langle\cdot, \cdot\rangle)$ be an Hilbert space, at least in some examples?
2. Is the space of sequences with only finitely many nonzero terms, dense in $\ell^{2}(\mathbb{N})$?
3. Find the Fourier coefficients of $\sin ^{3}(x)$ (compute no integrals!).
4. If $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in $L^{2}(0,1)$, then necessarily $f_{n} g_{n} \rightarrow f g$ in $L^{1}(0,1)$?
5. If $f_{n} \rightarrow f$ in $L^{1}([-\pi, \pi] ; \mathbb{C})$ then $c_{k}\left(f_{n}\right) \rightarrow c_{k}(f)$ as $n \rightarrow \infty$, uniformly in k ?
6.2. Fourier series in $(0, \pi)$. We want to show that every function in $L^{2}([0, \pi] ; \mathbb{R})$ can be expressed as a real Fourier series of sines.
6. Show that if $f \in L^{2}([-\pi, \pi] ; \mathbb{C})$ is odd then $c_{k}(f)$ are purely imaginary and $c_{0}=0$;
7. Show that if $f \in L^{2}([-\pi, \pi] ; \mathbb{R})$ is odd then its Fourier series simplifies to

$$
S_{N} f(x)=\sum_{1 \leq k \leq N} \underbrace{2 i c_{k}(f)}_{\in \mathbb{R}} \sin (k x)
$$

3. Given $g \in L^{2}([0, \pi] ; \mathbb{R})$ show that $\tilde{S}_{N} g \rightarrow g$ in L^{2} where

$$
\tilde{S}_{N} g(x):=\sum_{1 \leq k \leq N} \tilde{a}_{k}(g) \sin (k x), \quad \tilde{a}_{k}(g):=\frac{2}{\pi} \int_{0}^{\pi} g(x) \sin (k x) d x \in \mathbb{R}
$$

4. Conclude that $\{\sqrt{2 / \pi} \sin (k x)\}_{k \geq 1}$ in an Hilbert basis for $L^{2}([0, \pi] ; \mathbb{R})$.
6.3. Uniqueness of coefficients in \boldsymbol{L}^{1}. Fix $f \in L^{1}([-\pi, \pi] ; \mathbb{C})$, and let $c_{k}=c_{k}(f)$ be its Fourier coefficients, we want to show that if $c_{k}(f)=0$ for all $k \in \mathbb{Z}$, then $f \equiv 0$ a.e..
5. Show that if actually $f \in L^{2}([-\pi, \pi] ; \mathbb{C})$, then the statement follows directly from a Theorem seen in class.
6. Show that if $\int_{-\pi}^{\pi} f \phi=0$ for all $\phi \in L^{\infty}((-\pi, \pi) ; \mathbb{C})$, then we must have $f=0$ a.e..
7. Show that if $\int_{-\pi}^{\pi} f \phi=0$ for all $\phi \in C_{c}((-\pi, \pi) ; \mathbb{C})$, then we must have $f=0$ a.e..
8. Using and appropriate density result seen in class, show that if $c_{k}(f)=0$ for all k, then indeed $\int_{-\pi}^{\pi} f \phi=0$ for all $\phi \in C_{c}((-\pi, \pi) ; \mathbb{C})$. Hence by the previous steps $f=0$.
6.4. Coefficients summability implies convergence. Let $f \in L^{1}([-\pi, \pi] ; \mathbb{C})$, and let $c_{k}=c_{k}(f)$ be its Fourier coefficients.
9. Show that if $\sum_{k \in \mathbb{Z}}\left|c_{k}\right|^{2}<\infty$, then in fact $f \in L^{2}([-\pi, \pi] ; \mathbb{C})$;
10. Show that if $\sum_{k \in \mathbb{Z}}\left|c_{k}\right|<\infty$, then in fact $f \in C_{p e r}([-\pi, \pi] ; \mathbb{C})^{1}$

Hints:

6.1.1. In order to be an Hilbert space V should be complete, and it seems odd that a proper dense space contains the limits of all its Cauchy sequences...
6.1.2. Yes it is, to prove this you have to approximate any given element of ℓ^{2} with a sequence with finitely many nonzero elements... try the first that comes to you mind...
6.1.3. Recall that $2 i \sin (x)=e^{i x}-e^{-i x}$, so if you take cubes of both sides...
6.1.4. It is true, start with the bound

$$
\left|f_{n} g_{n}-f g\right| \leq\left|f_{n}-f\right|\left|g_{n}\right|+|f|\left|g-g_{n}\right|,
$$

and use Cauchy-Schwarz.
6.1.5. This is true, try estimate to $\left|c_{k}(f)-c_{k}\left(f_{n}\right)\right|$ with $\left\|f-f_{n}\right\|_{L^{1}}$, independently from k...
6.3.1. Recall Parseval's identity
6.3.2. Try what happens setting $\phi:=\bar{f} /\left(1+|f|^{2}\right) \ldots$
6.3.3. We would like to set again $\phi=\bar{f} /\left(1+|f|^{2}\right)$, but f is not continuous... nevertheless $C_{c}(-\pi, \pi)$ is dense in $L^{1}(-\pi, \pi) \ldots$
6.4.4. If you take any set of complex coefficients a_{-N}, \ldots, a_{N}, we obviously have

$$
a_{-N} c_{N}(f)+\ldots+a_{N} c_{N}(f)=0
$$

which can be rewritten as $\int f \phi=0$ for a ϕ which is of a very particular kind...
6.4.1. First show that the partial sums $S_{N}(x):=\sum_{-N}^{N} c_{k}(f) e^{i k x}$, are a Cauchy sequence in L^{2} (use Parseval's identity). Hence deduce that $S_{N} \rightarrow \tilde{f}$ in L^{2}, for some \tilde{f} in L^{2}. Now use Problem 6.3 to show that we must in fact have $\tilde{f}=f$ as L^{1} functions.
6.4.2. First show that the partial sums $S_{N}(x):=\sum_{-N}^{N} c_{k}(f) e^{i k x}$, are a Cauchy sequence in $C_{p e r}([-\pi, \pi])$ (the series is absolutely convergent, thanks to the summability assumptions on the $\left.\left\{c_{k}(f)\right\}\right)$. Hence deduce that $S_{N} \rightarrow \tilde{f}$ uniformly, for some \tilde{f} in $C_{\text {per }}$. Now use Problem 6.3 to show that we must in fact have $\tilde{f}=f$ as L^{1} functions.

[^0]
[^0]: ${ }^{1}$ This is a slight abuse of terminology. More precisely: there exist a (necessarily unique) continuous and periodic \tilde{f} such that $\tilde{f}=f$ a.e.

