1 Hilbert Spaces

e Inner product spaces

— Vector space: Definition. (Definition 1.1)
— Inner product space: Definition and properties. (Definition 1.3 & Basic properties)

— A vector subspace of an inner product space is an inner product space itself: Statement. (Example
1.7)

— Examples of inner product spaces: L?(X,pu,R), L*(X,u,C), (4, and C([0,1]). (Examples 1.8, 1.9
and 1.11)

— Norm: Definition. (Definition 1.13)

— Not every norm is induced by an inner product: Counterexample. (Example 1.19)

— Cauchy-Schwarz inequality for complex Hilbert spaces: Statement and proof. (Lemma 1.15)

— Parallelogram law: Statement. (Proposition 1.18)

— Polarization identities: Statements. (Proposition 1.20)

— Inner product through the polarization identities. (Remark 1.21)

— Ptolemy’s inequality: Statement. (Proposition 1.22)

— Inner product continuity: Statement. (Remark 1.23 & Lemma 1.24)

— Linear maps are isometries if and only if they preserve the inner product structure: Statement and
proof. (Exercise 1.2)

e Normed vector spaces

— Inner product spaces are normed vector spaces: Statement.

— Examples of finite-dimensional vector spaces: K% with p-norms (1 < p < oo) and the maximum norm
(p = ). (Example 1.27)

— Examples of infinite-dimensional vector spaces: C([0,1]) with p-norms (1 < p < co) and the uniform

norm (p = c0). (Example 1.28)

— LP-spaces as measure spaces are complete normed vector spaces: Statement and proof. (Example
1.29)

— Open ball: Definition.

— Convexity: Definition. (Definition 1.30)

— Open balls are convex in a normed vector space: Statement and proof. (Exercise 1.3)
— Interior points, open/closed sets, topology, topological vector space: Definitions.

— Topological vector space: Definition. (Definition 1.31)

— Normed vector spaces are topological vector spaces: Statement.

— Convergence of a sequence: Definitions in the topological sense and in the metric space sense. (Def-
inition 1.32)

— Completeness of a metric space, Cauchy sequence: Definitions. (Definition 1.32 & Recall)



— Convergent sequences are Cauchy: Statement and proof. (Remark 1.33)

— Limit points: Definition. (Lemma 1.34)

A set is closed if and only if it contains all of its limit points. Statement. (Lemma 1.34)

— Dense subsets: Definitions. (Definition 1.35)

Equivalent norms: Definition. (Definition 1.36)

— In finite dimension, all norms are equivalent: Statement and proof. (Exercise 1.4)

Equivalent norms induce the same topology: Statement. (Proposition 1.37)
— Relation between the maximum norm and the 1- and 2-norms in K¢: Statement and proof. (Exercise
1.5)
e Hilbert spaces
— Hilbert spaces can be viewed as a generalization of Euclideans spaces to infinite-dimensional settings:
Statement.
— Canonical norm and distance through an inner product: Definitions.
— Hilbert space: Definitions. (Definition 1.39)

— A norm is induced by a scalar product if and only if the parallelogram identity holds: Statement.
(Remark 1.40)

Examples: C?, L?(X, u, C), % with their canonical scalar products, finite-dimensional inner product

spaces. (Examples 1.41 and 1.42)

— Subspace is a Hilbert space if and only if it is closed. Proper dense subspaces are not Hilbert spaces:
Statements and proofs. (Exercise 1.6)

Inner product spaces are not necessarily complete: Counterexample. (Example 1.43)

— Orthogonality: Definition. Relation between orthogonality and the norm in an inner product space.
(Exercise 1.7)

— Projection operator, Gram-Schmidt orthogonalization process and orthonormal basis: Definitions.

(Recall: Gram-Schmidt process)
e Basis of a Hilbert space

— Separability: Definition. (Definition 1.44)

Examples of separable topological spaces: R?, C%, compact metric spaces, C(K), LP-spaces. (Example
1.45)

— Orthonormal system: Definition. (Definition 1.49)

Bessel inequality and Parseval’s identity: Statements. (Theorem 1.50)

— Hilbert basis: Definition. (Definition 1.51)

Equivalence of Hilbert and algebraic bases in finite dimensions, distinction in infinite dimensions

— Completeness criterion: Statement and proof. (Theorem 1.52)

Existence of a basis: Statement. (Theorem 1.53)



— Separable complex Hilbert spaces are isometric to Z(QC: Statement and proof. (Corollary 1.56)
e Closest point property, projections
— Projections on closed vector subspaces and closed convex sets: Statements and proofs. (Theorem

1.57 & Remark 1.58)

— Orthogonal space is not trivial: Statement and proof. Importance of the closedness hypothesis.
(Corollary 1.59 & Remark 1.60)

— Projection over finite-dimensional and separable closed subspaces: Statements and proofs. (Exam-
ples 1.61 and 1.62)

— Orthogonal complement: Definition. Closedness, non-triviality of the orthogonal complement and
trivial intersection with the linear space: Statements and proofs. (Definition 1.63 & Remarks 1.65
and 1.66)

— Orthogonal decomposition: Statement and proof. (Proposition 1.67)

e Linear operators and continuous functionals

Linear, bounded and unbounded operators, functionals, L(X,Y) and continuous dual space: Defini-
tions. (Definition 1.68)

— Example of unbounded operator: the derivative operator with proof. (Example 1.70)

Operator norm: Definition.

Equivalence between boundedness and continuity: Statement. (Proposition 1.75)
— Riesz Representation Theorem: Statement and proof. (Theorem 1.77)

— Isomorphism between a Hilbert space and its dual: Statement. (Corollary 1.78)

2 Fourier Series

e Definitions and main properties

— Fourier coefficient: Definition. Well-posedness in L' and L?: Statement and proof. Fourier coef-
ficients are bounded linear functionals on L?: Statement. (Definition 2.1, Exercise 2.1 & Remark
2.3)

— Fourier partial sums: Definition. (Definition 2.2)
— Fourier Basis Theorem: Statement. (Theorem 2.4)
— Convergence of the Fourier partial sums in L? and Parseval’s identity: Statement. (Corollary 2.7)

— Expressions of Fourier coefficients and partial sums using sine and cosine, and simplifications based

on function parities: Statements and proofs. (Exercise 2.2)

— Examples: Fourier coefficients of trigonometric functions and trigonometric polynomials. (Example
2.10 & Exercise 2.4)

— Examples: Computation of series through Parseval’s identity. (Example 2.11 & Exercise 2.5)

— Equivalence between real-valuedness of the function and conjugation symmetry of the Fourier coef-

ficients: Statement. (Proposition 2.12)



e Series in Banach spaces

Convergence criteria of series in Hilbert spaces and Pythagoras’ Theorem: Statements. (Theorem
2.13)

Completeness and convergence in CJ"(€2; C): Statement. (Example 2.15)

e Regularity and asymptotic behavior of Fourier coefficients

Fourier coefficients of the derivative: Statement and proof. Generalization to C* functions: State-
ment. (Proposition 2.17 & Theorem 2.22)

Asymptotic behavior of Fourier coefficients in C': Statement and proof. Generalization to C"
functions: Statement. (Proposition 2.19 & Theorem 2.22)

Uniform convergence of the Fourier partial sum of C' functions: Statement and proof. Generalization
to C" functions: Statement. (Corollaries 2.20 and 2.24)

Summability of Fourier coefficients implies regularity of the function and uniform convergence of the

Fourier partial sums along the derivatives: Statement. (Theorem 2.25)

e Pointwise convergence of Fourier series

Representation of the N*" Fourier partial sum as convolution with the N*" Dirichelt kernel: State-
ment. (Equation (2.19))

Riemann-Lebesgue Lemma: Statement. (Lemma 2.30)

Pointwise convergence of the Fourier partial sum at points where the function is Hélder continuous:

Statement and proof given for granted the previous two items. (Theorem 2.27)

e Overview of convergence (tables)

Relation between the modes of convergence L2, L, a.e. and “uniform”.
Nested classes of functions

Relationships between the decay properties of the Fourier coefficients and convergence of the Fourier

partial sums.

e Heat equation

all section 2.6 in the lecture notes (with proofs), except the first three paragraphs “Heuristic deriva-
tion”, “Transmission of the Thermal energy” and “The thermal energy is the temperature”.
In particular: strategy for solving the PDE, the existence theorem for nice initial data and the

uniqueness theorem of sufficiently regular solutions. (Theorems 2.32 and 2.35)

3 Fourier Transform

e Fourier transform in L'(R?)

Fourier transform: Definition. Well-posedness in L! and properties: Statements and proofs. (Defi-
nition 3.1 & Theorem 3.3)



Translation, modulation, dilatation, convolution formulas: Statements and proofs. (Propositions
3.6 and 3.8)

Examples: Exponential envelope function e~!* and characteristic function 1[—1,: Statements and
proofs. Normal Gaussian distribution ®;: Statement. (Examples 3.9, 3.11 and 3.12 & Remark 3.10

Fourier transform of a radial function is radial: Statement and proof. (Exercise 3.1)

Parity and valuedness of the Fourier transform: Statements and proofs. (Exercise 3.2)

e Space of Schwartz functions

Fourier transform of partial derivatives: Statement and proof. (Proposition 3.14)
Derivative of the Fourier transform: Statement and proof. (Proposition 3.15)

Fourier transform of the normal Gaussian distribution through an Ordinary Differential Equation:
Statement and proof. (Example 3.16)

Example: Fourier transform of ze~|#l: Statement and proof. (Exercise 3.5)

Schwartz space: Definition. Inclusion in LP-spaces and growth rate of Schwartz functions: State-
ments. (Definition 3.17 & Remark 3.18)

Closedness under partial derivation and multiplication by polynomials: Statement. (Remark 3.19)

Strict inclusion of smooth, compactly supported functions in the Schwartz space: Statement and

counterexample for equality. (Remark 3.20)
Semi-norm and norm on Schwartz space: Statement. (Exercise 3.6)

Schwartz functions have smooth Fourier transforms, Fourier transform of the derivatives and deriva-

tives of the Fourier transform: Statements. (Proposition 3.21)
Schwartz functions have Schwartz Fourier transforms: Statement. (Corollary 3.22)

Inversion formula in S(RY) and relaxation to functions in L' N F(L'): Statements. (Theorem 3.25
& Remark 3.29)

Shift formula: Statement. (Lemma 3.28)

Injectivity of the Fourier transform: Statement. (Remark 3.30)

Examples: u*u = u implies u = 0 almost everywhere, Fourier transforms of 5 +1I2 4 +£2)2 and Silriiﬁ),
and equation u *x u(z) = 14—% (Exercises 3.8-3.12)

e Fourier transform in L?(R?)

The Fourier transform is an isometry on L?: Statement. (Theorem 3.31)
Fourier transform in L?: Definition. Well-posedness: Statement.
Plancherel’s identity: Statement and proof. (Theorem 3.32)

Fourier transform of partial derivatives: Statement. (Proposition 3.35)

e Overview of results & properties (tables)

Fourier transform of Schwartz class functions
Correspondence between operations in S(R%)

Important Fourier transforms



4 Problem Sets

It is suggested to understand and learn the following problems from the problem sets
e 1.3
e 2.2

3.2 and 3.3

4.1.2,4.1.3 and 4.1.4

5.1.4 and 5.1.5

6.1.3, 6.1.5 and 6.4
e 8.2

9.2 and 9.3

10.1.2, 10.1.4, 10.2 and 10.3

11.1, 11.2.4 and 11.2.5

12.1.5 and 12.2

13.1.1, 13.1.4, 13.1.6 and 13.3



