
1 Hilbert Spaces

• Inner product spaces

– Vector space: Definition. (Definition 1.1)

– Inner product space: Definition and properties. (Definition 1.3 & Basic properties)

– A vector subspace of an inner product space is an inner product space itself: Statement. (Example
1.7)

– Examples of inner product spaces: L2(X,µ,R), L2(X,µ,C), ℓ2C, and C([0, 1]). (Examples 1.8, 1.9
and 1.11)

– Norm: Definition. (Definition 1.13)

– Not every norm is induced by an inner product: Counterexample. (Example 1.19)

– Cauchy-Schwarz inequality for complex Hilbert spaces: Statement and proof. (Lemma 1.15)

– Parallelogram law: Statement. (Proposition 1.18)

– Polarization identities: Statements. (Proposition 1.20)

– Inner product through the polarization identities. (Remark 1.21)

– Ptolemy’s inequality: Statement. (Proposition 1.22)

– Inner product continuity: Statement. (Remark 1.23 & Lemma 1.24)

– Linear maps are isometries if and only if they preserve the inner product structure: Statement and
proof. (Exercise 1.2)

• Normed vector spaces

– Inner product spaces are normed vector spaces: Statement.

– Examples of finite-dimensional vector spaces: Kd with p-norms (1 ≤ p < ∞) and the maximum norm
(p = ∞). (Example 1.27)

– Examples of infinite-dimensional vector spaces: C([0, 1]) with p-norms (1 ≤ p < ∞) and the uniform
norm (p = ∞). (Example 1.28)

– Lp-spaces as measure spaces are complete normed vector spaces: Statement and proof. (Example
1.29)

– Open ball: Definition.

– Convexity: Definition. (Definition 1.30)

– Open balls are convex in a normed vector space: Statement and proof. (Exercise 1.3)

– Interior points, open/closed sets, topology, topological vector space: Definitions.

– Topological vector space: Definition. (Definition 1.31)

– Normed vector spaces are topological vector spaces: Statement.

– Convergence of a sequence: Definitions in the topological sense and in the metric space sense. (Def-
inition 1.32)

– Completeness of a metric space, Cauchy sequence: Definitions. (Definition 1.32 & Recall)
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– Convergent sequences are Cauchy: Statement and proof. (Remark 1.33)

– Limit points: Definition. (Lemma 1.34)

– A set is closed if and only if it contains all of its limit points. Statement. (Lemma 1.34)

– Dense subsets: Definitions. (Definition 1.35)

– Equivalent norms: Definition. (Definition 1.36)

– In finite dimension, all norms are equivalent: Statement and proof. (Exercise 1.4)

– Equivalent norms induce the same topology: Statement. (Proposition 1.37)

– Relation between the maximum norm and the 1- and 2-norms in Kd: Statement and proof. (Exercise
1.5)

• Hilbert spaces

– Hilbert spaces can be viewed as a generalization of Euclideans spaces to infinite-dimensional settings:
Statement.

– Canonical norm and distance through an inner product: Definitions.

– Hilbert space: Definitions. (Definition 1.39)

– A norm is induced by a scalar product if and only if the parallelogram identity holds: Statement.
(Remark 1.40)

– Examples: Cd, L2(X,µ,C), ℓ2C with their canonical scalar products, finite-dimensional inner product
spaces. (Examples 1.41 and 1.42)

– Subspace is a Hilbert space if and only if it is closed. Proper dense subspaces are not Hilbert spaces:
Statements and proofs. (Exercise 1.6)

– Inner product spaces are not necessarily complete: Counterexample. (Example 1.43)

– Orthogonality: Definition. Relation between orthogonality and the norm in an inner product space.
(Exercise 1.7)

– Projection operator, Gram-Schmidt orthogonalization process and orthonormal basis: Definitions.
(Recall: Gram-Schmidt process)

• Basis of a Hilbert space

– Separability: Definition. (Definition 1.44)

– Examples of separable topological spaces: Rd, Cd, compact metric spaces, C(K), Lp-spaces. (Example
1.45)

– Orthonormal system: Definition. (Definition 1.49)

– Bessel inequality and Parseval’s identity: Statements. (Theorem 1.50)

– Hilbert basis: Definition. (Definition 1.51)

– Equivalence of Hilbert and algebraic bases in finite dimensions, distinction in infinite dimensions

– Completeness criterion: Statement and proof. (Theorem 1.52)

– Existence of a basis: Statement. (Theorem 1.53)
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– Separable complex Hilbert spaces are isometric to ℓ2C: Statement and proof. (Corollary 1.56)

• Closest point property, projections

– Projections on closed vector subspaces and closed convex sets: Statements and proofs. (Theorem
1.57 & Remark 1.58)

– Orthogonal space is not trivial: Statement and proof. Importance of the closedness hypothesis.
(Corollary 1.59 & Remark 1.60)

– Projection over finite-dimensional and separable closed subspaces: Statements and proofs. (Exam-
ples 1.61 and 1.62)

– Orthogonal complement: Definition. Closedness, non-triviality of the orthogonal complement and
trivial intersection with the linear space: Statements and proofs. (Definition 1.63 & Remarks 1.65
and 1.66)

– Orthogonal decomposition: Statement and proof. (Proposition 1.67)

• Linear operators and continuous functionals

– Linear, bounded and unbounded operators, functionals, L(X,Y ) and continuous dual space: Defini-
tions. (Definition 1.68)

– Example of unbounded operator: the derivative operator with proof. (Example 1.70)

– Operator norm: Definition.

– Equivalence between boundedness and continuity: Statement. (Proposition 1.75)

– Riesz Representation Theorem: Statement and proof. (Theorem 1.77)

– Isomorphism between a Hilbert space and its dual: Statement. (Corollary 1.78)

2 Fourier Series

• Definitions and main properties

– Fourier coefficient: Definition. Well-posedness in L1 and L2: Statement and proof. Fourier coef-
ficients are bounded linear functionals on L2: Statement. (Definition 2.1, Exercise 2.1 & Remark
2.3)

– Fourier partial sums: Definition. (Definition 2.2)

– Fourier Basis Theorem: Statement. (Theorem 2.4)

– Convergence of the Fourier partial sums in L2 and Parseval’s identity: Statement. (Corollary 2.7)

– Expressions of Fourier coefficients and partial sums using sine and cosine, and simplifications based
on function parities: Statements and proofs. (Exercise 2.2)

– Examples: Fourier coefficients of trigonometric functions and trigonometric polynomials. (Example
2.10 & Exercise 2.4)

– Examples: Computation of series through Parseval’s identity. (Example 2.11 & Exercise 2.5)

– Equivalence between real-valuedness of the function and conjugation symmetry of the Fourier coef-
ficients: Statement. (Proposition 2.12)
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• Series in Banach spaces

– Convergence criteria of series in Hilbert spaces and Pythagoras’ Theorem: Statements. (Theorem
2.13)

– Completeness and convergence in Cm
b (Ω;C): Statement. (Example 2.15)

• Regularity and asymptotic behavior of Fourier coefficients

– Fourier coefficients of the derivative: Statement and proof. Generalization to Ch functions: State-
ment. (Proposition 2.17 & Theorem 2.22)

– Asymptotic behavior of Fourier coefficients in C1: Statement and proof. Generalization to Ch

functions: Statement. (Proposition 2.19 & Theorem 2.22)

– Uniform convergence of the Fourier partial sum of C1 functions: Statement and proof. Generalization
to Ch functions: Statement. (Corollaries 2.20 and 2.24)

– Summability of Fourier coefficients implies regularity of the function and uniform convergence of the
Fourier partial sums along the derivatives: Statement. (Theorem 2.25)

• Pointwise convergence of Fourier series

– Representation of the N th Fourier partial sum as convolution with the N th Dirichelt kernel: State-
ment. (Equation (2.19))

– Riemann-Lebesgue Lemma: Statement. (Lemma 2.30)

– Pointwise convergence of the Fourier partial sum at points where the function is Hölder continuous:
Statement and proof given for granted the previous two items. (Theorem 2.27)

• Overview of convergence (tables)

– Relation between the modes of convergence L2, L∞, a.e. and “uniform”.

– Nested classes of functions

– Relationships between the decay properties of the Fourier coefficients and convergence of the Fourier
partial sums.

• Heat equation

– all section 2.6 in the lecture notes (with proofs), except the first three paragraphs “Heuristic deriva-
tion”, “Transmission of the Thermal energy” and “The thermal energy is the temperature”.

In particular: strategy for solving the PDE, the existence theorem for nice initial data and the
uniqueness theorem of sufficiently regular solutions. (Theorems 2.32 and 2.35)

3 Fourier Transform

• Fourier transform in L1(Rd)

– Fourier transform: Definition. Well-posedness in L1 and properties: Statements and proofs. (Defi-
nition 3.1 & Theorem 3.3)
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– Translation, modulation, dilatation, convolution formulas: Statements and proofs. (Propositions
3.6 and 3.8)

– Examples: Exponential envelope function e−|x| and characteristic function 1[−1,1]: Statements and
proofs. Normal Gaussian distribution Φd: Statement. (Examples 3.9, 3.11 and 3.12 & Remark 3.10

– Fourier transform of a radial function is radial: Statement and proof. (Exercise 3.1)

– Parity and valuedness of the Fourier transform: Statements and proofs. (Exercise 3.2)

• Space of Schwartz functions

– Fourier transform of partial derivatives: Statement and proof. (Proposition 3.14)

– Derivative of the Fourier transform: Statement and proof. (Proposition 3.15)

– Fourier transform of the normal Gaussian distribution through an Ordinary Differential Equation:
Statement and proof. (Example 3.16)

– Example: Fourier transform of xe−|x|: Statement and proof. (Exercise 3.5)

– Schwartz space: Definition. Inclusion in Lp-spaces and growth rate of Schwartz functions: State-
ments. (Definition 3.17 & Remark 3.18)

– Closedness under partial derivation and multiplication by polynomials: Statement. (Remark 3.19)

– Strict inclusion of smooth, compactly supported functions in the Schwartz space: Statement and
counterexample for equality. (Remark 3.20)

– Semi-norm and norm on Schwartz space: Statement. (Exercise 3.6)

– Schwartz functions have smooth Fourier transforms, Fourier transform of the derivatives and deriva-
tives of the Fourier transform: Statements. (Proposition 3.21)

– Schwartz functions have Schwartz Fourier transforms: Statement. (Corollary 3.22)

– Inversion formula in S(Rd) and relaxation to functions in L1 ∩ F(L1): Statements. (Theorem 3.25
& Remark 3.29)

– Shift formula: Statement. (Lemma 3.28)

– Injectivity of the Fourier transform: Statement. (Remark 3.30)

– Examples: u∗u = u implies u = 0 almost everywhere, Fourier transforms of 1
1+x2 , 1

(1+x2)2 and sin(2x)
1+x2 ,

and equation u ∗ u(x) = 2
1+x2 . (Exercises 3.8-3.12)

• Fourier transform in L2(Rd)

– The Fourier transform is an isometry on L2: Statement. (Theorem 3.31)

– Fourier transform in L2: Definition. Well-posedness: Statement.

– Plancherel’s identity: Statement and proof. (Theorem 3.32)

– Fourier transform of partial derivatives: Statement. (Proposition 3.35)

• Overview of results & properties (tables)

– Fourier transform of Schwartz class functions

– Correspondence between operations in S(Rd)

– Important Fourier transforms
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4 Problem Sets

It is suggested to understand and learn the following problems from the problem sets

• 1.3

• 2.2

• 3.2 and 3.3

• 4.1.2, 4.1.3 and 4.1.4

• 5.1.4 and 5.1.5

• 6.1.3, 6.1.5 and 6.4

• 8.2

• 9.2 and 9.3

• 10.1.2, 10.1.4, 10.2 and 10.3

• 11.1, 11.2.4 and 11.2.5

• 12.1.5 and 12.2

• 13.1.1, 13.1.4, 13.1.6 and 13.3
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