1 Hilbert Spaces

- Inner product spaces
- Vector space: Definition. (Definition 1.1)
- Inner product space: Definition and properties. (Definition 1.3 \& Basic properties)
- A vector subspace of an inner product space is an inner product space itself: Statement. (Example 1.7)
- Examples of inner product spaces: $L^{2}(X, \mu, \mathbb{R}), L^{2}(X, \mu, \mathbb{C}), \ell_{\mathbb{C}}^{2}$, and $\mathcal{C}([0,1])$. (Examples 1.8, 1.9 and 1.11)
- Norm: Definition. (Definition 1.13)
- Not every norm is induced by an inner product: Counterexample. (Example 1.19)
- Cauchy-Schwarz inequality for complex Hilbert spaces: Statement and proof. (Lemma 1.15)
- Parallelogram law: Statement. (Proposition 1.18)
- Polarization identities: Statements. (Proposition 1.20)
- Inner product through the polarization identities. (Remark 1.21)
- Ptolemy's inequality: Statement. (Proposition 1.22)
- Inner product continuity: Statement. (Remark 1.23 \& Lemma 1.24)
- Linear maps are isometries if and only if they preserve the inner product structure: Statement and proof. (Exercise 1.2)
- Normed vector spaces
- Inner product spaces are normed vector spaces: Statement.
- Examples of finite-dimensional vector spaces: \mathbb{K}^{d} with p-norms $(1 \leq p<\infty)$ and the maximum norm ($p=\infty$). (Example 1.27)
- Examples of infinite-dimensional vector spaces: $\mathcal{C}([0,1])$ with p-norms $(1 \leq p<\infty)$ and the uniform norm $(p=\infty)$. (Example 1.28)
- L^{p}-spaces as measure spaces are complete normed vector spaces: Statement and proof. (Example 1.29)
- Open ball: Definition.
- Convexity: Definition. (Definition 1.30)
- Open balls are convex in a normed vector space: Statement and proof. (Exercise 1.3)
- Interior points, open/closed sets, topology, topological vector space: Definitions.
- Topological vector space: Definition. (Definition 1.31)
- Normed vector spaces are topological vector spaces: Statement.
- Convergence of a sequence: Definitions in the topological sense and in the metric space sense. (Definition 1.32)
- Completeness of a metric space, Cauchy sequence: Definitions. (Definition 1.32 \& Recall)
- Convergent sequences are Cauchy: Statement and proof. (Remark 1.33)
- Limit points: Definition. (Lemma 1.34)
- A set is closed if and only if it contains all of its limit points. Statement. (Lemma 1.34)
- Dense subsets: Definitions. (Definition 1.35)
- Equivalent norms: Definition. (Definition 1.36)
- In finite dimension, all norms are equivalent: Statement and proof. (Exercise 1.4)
- Equivalent norms induce the same topology: Statement. (Proposition 1.37)
- Relation between the maximum norm and the 1- and 2-norms in \mathbb{K}^{d} : Statement and proof. (Exercise 1.5)
- Hilbert spaces
- Hilbert spaces can be viewed as a generalization of Euclideans spaces to infinite-dimensional settings: Statement.
- Canonical norm and distance through an inner product: Definitions.
- Hilbert space: Definitions. (Definition 1.39)
- A norm is induced by a scalar product if and only if the parallelogram identity holds: Statement. (Remark 1.40)
- Examples: $\mathbb{C}^{d}, L^{2}(X, \mu, \mathbb{C}), \ell_{\mathbb{C}}^{2}$ with their canonical scalar products, finite-dimensional inner product spaces. (Examples 1.41 and 1.42)
- Subspace is a Hilbert space if and only if it is closed. Proper dense subspaces are not Hilbert spaces: Statements and proofs. (Exercise 1.6)
- Inner product spaces are not necessarily complete: Counterexample. (Example 1.43)
- Orthogonality: Definition. Relation between orthogonality and the norm in an inner product space. (Exercise 1.7)
- Projection operator, Gram-Schmidt orthogonalization process and orthonormal basis: Definitions. (Recall: Gram-Schmidt process)
- Basis of a Hilbert space
- Separability: Definition. (Definition 1.44)
- Examples of separable topological spaces: $\mathbb{R}^{d}, \mathbb{C}^{d}$, compact metric spaces, $\mathcal{C}(K), L^{p}$-spaces. (Example 1.45)
- Orthonormal system: Definition. (Definition 1.49)
- Bessel inequality and Parseval's identity: Statements. (Theorem 1.50)
- Hilbert basis: Definition. (Definition 1.51)
- Equivalence of Hilbert and algebraic bases in finite dimensions, distinction in infinite dimensions
- Completeness criterion: Statement and proof. (Theorem 1.52)
- Existence of a basis: Statement. (Theorem 1.53)
- Separable complex Hilbert spaces are isometric to $\ell_{\mathbb{C}}^{2}$: Statement and proof. (Corollary 1.56)
- Closest point property, projections
- Projections on closed vector subspaces and closed convex sets: Statements and proofs. (Theorem 1.57 \& Remark 1.58)
- Orthogonal space is not trivial: Statement and proof. Importance of the closedness hypothesis. (Corollary 1.59 \& Remark 1.60)
- Projection over finite-dimensional and separable closed subspaces: Statements and proofs. (Examples 1.61 and 1.62)
- Orthogonal complement: Definition. Closedness, non-triviality of the orthogonal complement and trivial intersection with the linear space: Statements and proofs. (Definition 1.63 \& Remarks 1.65 and 1.66)
- Orthogonal decomposition: Statement and proof. (Proposition 1.67)
- Linear operators and continuous functionals
- Linear, bounded and unbounded operators, functionals, $L(X, Y)$ and continuous dual space: Definitions. (Definition 1.68)
- Example of unbounded operator: the derivative operator with proof. (Example 1.70)
- Operator norm: Definition.
- Equivalence between boundedness and continuity: Statement. (Proposition 1.75)
- Riesz Representation Theorem: Statement and proof. (Theorem 1.77)
- Isomorphism between a Hilbert space and its dual: Statement. (Corollary 1.78)

2 Fourier Series

- Definitions and main properties
- Fourier coefficient: Definition. Well-posedness in L^{1} and L^{2} : Statement and proof. Fourier coefficients are bounded linear functionals on L^{2} : Statement. (Definition 2.1, Exercise 2.1 \& Remark 2.3)
- Fourier partial sums: Definition. (Definition 2.2)
- Fourier Basis Theorem: Statement. (Theorem 2.4)
- Convergence of the Fourier partial sums in L^{2} and Parseval's identity: Statement. (Corollary 2.7)
- Expressions of Fourier coefficients and partial sums using sine and cosine, and simplifications based on function parities: Statements and proofs. (Exercise 2.2)
- Examples: Fourier coefficients of trigonometric functions and trigonometric polynomials. (Example 2.10 \& Exercise 2.4)
- Examples: Computation of series through Parseval's identity. (Example 2.11 \& Exercise 2.5)
- Equivalence between real-valuedness of the function and conjugation symmetry of the Fourier coefficients: Statement. (Proposition 2.12)
- Series in Banach spaces
- Convergence criteria of series in Hilbert spaces and Pythagoras' Theorem: Statements. (Theorem 2.13)
- Completeness and convergence in $\mathcal{C}_{b}^{m}(\Omega ; \mathbb{C})$: Statement. (Example 2.15)
- Regularity and asymptotic behavior of Fourier coefficients
- Fourier coefficients of the derivative: Statement and proof. Generalization to \mathcal{C}^{h} functions: Statement. (Proposition 2.17 \& Theorem 2.22)
- Asymptotic behavior of Fourier coefficients in \mathcal{C}^{1} : Statement and proof. Generalization to \mathcal{C}^{h} functions: Statement. (Proposition 2.19 \& Theorem 2.22)
- Uniform convergence of the Fourier partial sum of \mathcal{C}^{1} functions: Statement and proof. Generalization to \mathcal{C}^{h} functions: Statement. (Corollaries 2.20 and 2.24)
- Summability of Fourier coefficients implies regularity of the function and uniform convergence of the Fourier partial sums along the derivatives: Statement. (Theorem 2.25)
- Pointwise convergence of Fourier series
- Representation of the $N^{\text {th }}$ Fourier partial sum as convolution with the $N^{\text {th }}$ Dirichelt kernel: Statement. (Equation (2.19))
- Riemann-Lebesgue Lemma: Statement. (Lemma 2.30)
- Pointwise convergence of the Fourier partial sum at points where the function is Hölder continuous: Statement and proof given for granted the previous two items. (Theorem 2.27)
- Overview of convergence (tables)
- Relation between the modes of convergence L^{2}, L^{∞}, a.e. and "uniform".
- Nested classes of functions
- Relationships between the decay properties of the Fourier coefficients and convergence of the Fourier partial sums.
- Heat equation
- all section 2.6 in the lecture notes (with proofs), except the first three paragraphs "Heuristic derivation", "Transmission of the Thermal energy" and "The thermal energy is the temperature".
In particular: strategy for solving the PDE, the existence theorem for nice initial data and the uniqueness theorem of sufficiently regular solutions. (Theorems 2.32 and 2.35)

3 Fourier Transform

- Fourier transform in $L^{1}\left(\mathbb{R}^{d}\right)$
- Fourier transform: Definition. Well-posedness in L^{1} and properties: Statements and proofs. (Definition 3.1 \& Theorem 3.3)
- Translation, modulation, dilatation, convolution formulas: Statements and proofs. (Propositions 3.6 and 3.8)
- Examples: Exponential envelope function $e^{-|x|}$ and characteristic function $\mathbb{1}_{[-1,1]}$: Statements and proofs. Normal Gaussian distribution Φ_{d} : Statement. (Examples 3.9, 3.11 and 3.12 \& Remark 3.10
- Fourier transform of a radial function is radial: Statement and proof. (Exercise 3.1)
- Parity and valuedness of the Fourier transform: Statements and proofs. (Exercise 3.2)
- Space of Schwartz functions
- Fourier transform of partial derivatives: Statement and proof. (Proposition 3.14)
- Derivative of the Fourier transform: Statement and proof. (Proposition 3.15)
- Fourier transform of the normal Gaussian distribution through an Ordinary Differential Equation: Statement and proof. (Example 3.16)
- Example: Fourier transform of $x e^{-|x|}$: Statement and proof. (Exercise 3.5)
- Schwartz space: Definition. Inclusion in L^{p}-spaces and growth rate of Schwartz functions: Statements. (Definition 3.17 \& Remark 3.18)
- Closedness under partial derivation and multiplication by polynomials: Statement. (Remark 3.19)
- Strict inclusion of smooth, compactly supported functions in the Schwartz space: Statement and counterexample for equality. (Remark 3.20)
- Semi-norm and norm on Schwartz space: Statement. (Exercise 3.6)
- Schwartz functions have smooth Fourier transforms, Fourier transform of the derivatives and derivatives of the Fourier transform: Statements. (Proposition 3.21)
- Schwartz functions have Schwartz Fourier transforms: Statement. (Corollary 3.22)
- Inversion formula in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ and relaxation to functions in $L^{1} \cap \mathcal{F}\left(L^{1}\right)$: Statements. (Theorem 3.25 \& Remark 3.29)
- Shift formula: Statement. (Lemma 3.28)
- Injectivity of the Fourier transform: Statement. (Remark 3.30)
- Examples: $u * u=u$ implies $u=0$ almost everywhere, Fourier transforms of $\frac{1}{1+x^{2}}, \frac{1}{\left(1+x^{2}\right)^{2}}$ and $\frac{\sin (2 x)}{1+x^{2}}$, and equation $u * u(x)=\frac{2}{1+x^{2}}$. (Exercises 3.8-3.12)
- Fourier transform in $L^{2}\left(\mathbb{R}^{d}\right)$
- The Fourier transform is an isometry on L^{2} : Statement. (Theorem 3.31)
- Fourier transform in L^{2} : Definition. Well-posedness: Statement.
- Plancherel's identity: Statement and proof. (Theorem 3.32)
- Fourier transform of partial derivatives: Statement. (Proposition 3.35)
- Overview of results \& properties (tables)
- Fourier transform of Schwartz class functions
- Correspondence between operations in $\mathcal{S}\left(\mathbb{R}^{d}\right)$
- Important Fourier transforms

4 Problem Sets

It is suggested to understand and learn the following problems from the problem sets

- 1.3
- 2.2
- 3.2 and 3.3
- 4.1.2, 4.1.3 and 4.1.4
- 5.1.4 and 5.1.5
- 6.1.3, 6.1.5 and 6.4
- 8.2
- 9.2 and 9.3
- 10.1.2, 10.1.4, 10.2 and 10.3
- 11.1, 11.2.4 and 11.2.5
- 12.1.5 and 12.2
- 13.1.1, 13.1.4, 13.1.6 and 13.3

