Exercise Sheet 1

Exercise 1

Figure 1 is a picture of the unit disk model of the hyperbolic plane \mathbb{H}^{2}. The hyperbolic metric $d_{\mathbb{H}^{2}}$ on \mathbb{H}^{2} is such that all the white and blue triangles are congruent (have same area and same side lengths). Argue from the picture that the distance from the midpoint O to some other point P is approximately

$$
d_{\mathbb{H}^{2}}(O, P) \sim \frac{d_{\mathbb{R}^{2}}(O, P)}{1-d_{\mathbb{R}^{2}}(O, P)}
$$

where $d_{\mathbb{R}^{2}}$ is the Euclidean distance.

Figure 1: The unit disk $\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$ with a metric $d_{\mathbb{H}^{2}}$ is a model for the hyperbolic plane.

Exercise 2

We consider the extended complex plane or Riemann sphere $\hat{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$, where "the point at infinity" ∞ is just some symbol that is not contained in \mathbb{C}. We define the inversion

$$
J: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}} \quad z \mapsto\left\{\begin{array}{cc}
\frac{z}{|z|^{2}} & \text { if } z \in \mathbb{C} \backslash\{0\} \\
\infty & \text { if } z=0 \\
0 & \text { if } z=\infty
\end{array}\right.
$$

What is the fixed point set of J ? What is $J \circ J$? Is $\left.J\right|_{\mathbb{C}}$ holomorphic?

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	24. Feb. 2023

Exercise 3

Let $a, b, c, d \in \mathbb{C}$ be complex numbers such that $a d-b c \neq 0$. Then a map $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ of the form

$$
\begin{aligned}
z & \mapsto \frac{a z+b}{c z+d} \quad \text { for } z \in \mathbb{C} \\
\infty & \mapsto \frac{a}{c}
\end{aligned}
$$

is called an orientation-preserving Möbius transformation. Here we make the convention that for any constant $c \in \mathbb{C} \backslash\{0\}, c / 0=\infty$.
(a) Explain why the condition $a d-b c \neq 0$ is needed.
(b) Show that the composition of two orientation preserving Möbius transformations is again an orientation-preserving Möbius transformation again.
(c) Let Möb b_{+}be the set of orientation-preserving Möbius transformations equipped with the operation of composition. Show that Möb ${ }_{+}$is a group.
(d) Is J from exercise 2 an orientation preserving Möbius transformation?

