ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	19. May 2023

Exercise Sheet 12

Exercise 1

Sketch the hypberbolic plane and three pairwise intersecting hyperbolic lines. Sketch a fourth hyperbolic line which is ultraparallel to all previous three.

Exercise 2

Let ℓ and ℓ^{\prime} be two hyperbolic lines that have a common limit point $p \in \partial B_{1}=$ S^{1}. Prove that there are sequences of points $x_{1}, x_{2}, \ldots \in \ell$ and $y_{1}, y_{2}, \ldots \in \ell^{\prime}$ with $\lim _{n \rightarrow \infty}\left(x_{n}\right)=p=\lim _{n \rightarrow \infty}\left(y_{n}\right)$, such that there is a constant C with

$$
d_{H}\left(x_{n}, y_{n}\right) \leq C e^{-d_{H}\left(x_{1}, x_{n}\right)} \quad \text { for all } n \in \mathbb{N},
$$

i.e. the distance between the hyperbolic lines ℓ and ℓ^{\prime} converges to 0 exponentially fast.

Hint: Use the Taylor expansion of cosh.

Exercise 3

(a) Prove that every hyperbolic triangle has angle sum less than 180°.
(b) Show that there are hyperbolic triangles of arbitrarily small positive interior angle sum.
(c) Prove that there is a regular ${ }^{1}$ octagon in the hypberbolic plane, all of whose angles are 45°.

Exercise 4

Consider the regular hyperbolic octagon all of whose angles are $2 \pi / 8$ from Exercise $3(\mathrm{c})$. Label the sides of the hyperbolic octagon by the letters a, b, a^{-1}, b^{-1}, c, d, c^{-1}, d^{-1} as in Figure 1. Now for each letter in $\{a, b, c, d\}$ glue together the two sides labelled by it and its inverse, respecting the orientation ${ }^{2}$ Denote the resulting object by X.
(a) Prove that all eight vertices of the hyperbolic octagon get identified into one point in X.
(b) Show that for every $x \in X$, we can identify a neighborhood of x with a neighborhood of a point in the hyperbolic plane. This way we can give X a local hyperbolic metric, we then say that X is a hyperbolic surface.
(c) Show that X is homeomorphic to a double torus.

[^0]ETH Zürich
D-MATH

Figure 1: A hyperbolic octagon whose sides are to be identified.

[^0]: ${ }^{1}$ An n-gon is regular if all its sides have the same lengths and the angles at all vertices are the same.
 ${ }^{2}$ This construction is analogous to the construction of a torus by identifying the opposite sides of a square.

