ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	3. Mar. 2023

Exercise Sheet 2

Exercise 1

Identify $\mathbb{R}^2 \cong \mathbb{C}$.

(a) Show that the inverse function

 $\mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ $z \mapsto 1/z$

is an orientation-preserving map.

(b) Define $I: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ by extending the inverse to have suitable values at 0 and at ∞ . Prove that I is a homeomorphism of $\hat{\mathbb{C}}$ with respect to the topology defined in class.

Exercise 2

Consider the three Möbius transformations $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$

$$I: z \mapsto \frac{1}{z} \qquad J: z \mapsto \frac{1}{\bar{z}} \qquad C: z \mapsto \bar{z}.$$

- (a) Describe the group generated by I, J and C.
- (b) Describe the actions of I, J and C on the Riemann sphere considered as the round sphere S^2 .
- (c) Which of these maps are orientation-preserving? Which are orientation-reversing?

Exercise 3

- (a) Give an example of a real affine map $\mathbb{R}^2 \to \mathbb{R}^2$ that is not a similarity.
- (b) Classify the similarities of \mathbb{R}^2 in terms of their fixed points.
- (c) Show that the group of similarities of the plane $\operatorname{Sim}(\mathbb{R}^2)$ has the structure of a semidirect product $\operatorname{Sim}(\mathbb{R}^2) = \operatorname{Sim}_+(\mathbb{R}^2) \rtimes \mathbb{Z}/2\mathbb{Z}$.