Exercise Sheet 3

Exercise 1

- (a) Show that orientation-preserving Möbius transformations $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ have exactly either one or two fixed points, or are the identity.
- (b) Give examples of orientation-preserving Möbiustransformations with one (resp. two) fixed points.
- (c) Draw a picture of how the Möbiustransformations from (b) act on $\hat{\mathbb{C}}$.
- (d) Does the statement of (a) also hold for orientation-reversing Möbius transformations?

Exercise 2

- (a) Show that the group of Möbius transformations Möb acts transitively on $\hat{\mathbb{C}}$, i.e. for any $x, y \in \hat{\mathbb{C}}$ there is a $g \in M$ öb such that g(x) = y.
- (b) Determine all the combinations of coefficients a, b, c, d such that the corresponding Möbiustransformation is the identity.
- (c) Find all orientation-preserving Mobius transformations $f\colon\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ that send

 $\infty\mapsto i\mapsto 0\mapsto -i\mapsto\infty.$

(d) What are the possible values for f(1) under a Mobius transformation as in (c)?

Exercise 3

Answer the questions (a) - (e) for the functions (1) - (7). All functions are continuous functions of the Riemann-sphere $\hat{\mathbb{C}}$. For (1) - (5) we have $f(\infty) = \infty$.

- (a) Find the fixed point set $\{z \in \hat{\mathbb{C}} : f_i(z) = z\}$.
- (b) Does f_i preserve the unit disk?
- (c) Is f_i an affine map, when restricted to $\mathbb{C} \cong \mathbb{R}^2$?
- (d) Is f_i a similarity, when restricted to \mathbb{C} ?
- (e) If f_i orientation-preserving or orientation-reversing?
- (1) $f_1: z \mapsto z + a$, where $a \in \mathbb{C}$ fixed.
- (2) $f_2: z \mapsto rz$, where r > 0 fixed.
- (3) $f_3: z \mapsto e^{i\varphi} z$, where $\varphi \in [0, 2\pi)$ fixed.
- (4) $f_4: z \mapsto \overline{z}.$
- (5) $f_5: z \mapsto z^2$.
- (6) $f_6: z \mapsto \frac{z}{|z|^2}$, where $f(\infty) = 0$ and $f(0) = \infty$.
- (7) $f_7: z \mapsto \frac{1}{z}$, where $f(\infty) = 0$ and $f(0) = \infty$.