ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	10. Mar. 2023

Exercise Sheet 3

Exercise 1

(a) Show that orientation-preserving Möbius transformations $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ have exactly either one or two fixed points, or are the identity.
(b) Give examples of orientation-preserving Möbiustransformations with one (resp. two) fixed points.
(c) Draw a picture of how the Möbiustransformations from (b) act on $\hat{\mathbb{C}}$.
(d) Does the statement of (a) also hold for orientation-reversing Möbius transformations?

Exercise 2

(a) Show that the group of Möbius transformations Möb acts transitively on $\hat{\mathbb{C}}$, i.e. for any $x, y \in \hat{\mathbb{C}}$ there is a $g \in$ Möb such that $g(x)=y$.
(b) Determine all the combinations of coefficients a, b, c, d such that the corresponding Möbiustransformation is the identity.
(c) Find all orientation-preserving Mobius transformations $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ that send

$$
\infty \mapsto i \mapsto 0 \mapsto-i \mapsto \infty .
$$

(d) What are the possible values for $f(1)$ under a Mobius transformation as in (c)?

Exercise 3

Answer the questions (a) - (e) for the functions (1) - (7). All functions are continuous functions of the Riemann-sphere $\widehat{\mathbb{C}}$. For (1) - (5) we have $f(\infty)=\infty$.
(a) Find the fixed point set $\left\{z \in \hat{\mathbb{C}}: f_{i}(z)=z\right\}$.
(b) Does f_{i} preserve the unit disk?
(c) Is f_{i} an affine map, when restricted to $\mathbb{C} \cong \mathbb{R}^{2}$?
(d) Is f_{i} a similarity, when restricted to \mathbb{C} ?
(e) If f_{i} orientation-preserving or orientation-reversing?
(1) $f_{1}: z \mapsto z+a$, where $a \in \mathbb{C}$ fixed.
(2) $f_{2}: z \mapsto r z$, where $r>0$ fixed.
(3) $f_{3}: z \mapsto e^{i \varphi} z$, where $\varphi \in[0,2 \pi)$ fixed.
(4) $f_{4}: z \mapsto \bar{z}$.
(5) $f_{5}: z \mapsto z^{2}$.
(6) $f_{6}: z \mapsto \frac{z}{|z|^{2}}$, where $f(\infty)=0$ and $f(0)=\infty$.
(7) $f_{7}: z \mapsto \frac{1}{z}$, where $f(\infty)=0$ and $f(0)=\infty$.

