Exercise Sheet 4

Exercise 1

For the following exercises, first reason geometrically and then find an algebraic description.

- (a) Let $p \in \mathbb{C}$. Describe the point-reflection $Q_p : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.
- (b) Show that $Q_p^2 = \text{id.}$
- (c) For $p, q \in \mathbb{C}$, what is $Q_p \circ Q_q$?
- (d) Let $L \subseteq \mathbb{C}$ be a line. Describe the reflection $R_L : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ along L.
- (e) Show that for every line L through 0, R_L can be written as $z \mapsto e^{i\varphi} \bar{z}$ for some $\varphi \in \mathbb{R}$.
- (f) What is the line along which $z \mapsto e^{i\varphi} \bar{z}$ reflects?
- (g) Write Q_p and R_L as Möbius transformations.

Exercise 2

Let $b \in \mathbb{C}$ and $\lambda > 0$. Let T_b be the translation by b and let M_{λ} be the multiplication by λ .

- (a) Describe the effect of $T_b \circ M_\lambda \circ T_{-b}$ geometrically.
- (b) Describe the effect of $M_{\lambda} \circ T_b \circ M_{\lambda^{-1}}$ geometrically.
- (c) Express the transformations in (a) and (b) as Möbius transformations.

Exercise 3

Given a group of matrices $G \subseteq M^{n \times n}(\mathbb{C})$, let $Z_G = \{g \in G : \forall h \in G : gh = hg\}$ be the center. Then PG is defined to be the group G/Z_G . Recall that for any field F and any $n \ge 1$,

$$GL(n, F) = \{g \in M^{n \times n}(F) \colon \det(g) \neq 0\}$$
$$SL(n, F) = \{g \in M^{n \times n}(F) \colon \det(g) = 1\}.$$

- (a) Show that $PGL(2, \mathbb{R}) \cong PSL(2, \mathbb{R})$.
- (b) Show that $PGL(3, \mathbb{R}) \cong PSL(3, \mathbb{R})$.
- (c) What about $PGL(n, \mathbb{R})$ and $PSL(n, \mathbb{R})$ for $n \ge 4$?
- (d) Show that $PGL(n, \mathbb{C}) \cong PSL(n, \mathbb{C})$ for all $n \ge 2$.