Exercise Sheet 4

Exercise 1

For the following exercises, first reason geometrically and then find an algebraic description.
(a) Let $p \in \mathbb{C}$. Describe the point-reflection $Q_{p}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$.
(b) Show that $Q_{p}^{2}=\mathrm{id}$.
(c) For $p, q \in \mathbb{C}$, what is $Q_{p} \circ Q_{q}$?
(d) Let $L \subseteq \mathbb{C}$ be a line. Describe the reflection $R_{L}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ along L.
(e) Show that for every line L through $0, R_{L}$ can be written as $z \mapsto e^{i \varphi} \bar{z}$ for some $\varphi \in \mathbb{R}$.
(f) What is the line along which $z \mapsto e^{i \varphi} \bar{z}$ reflects?
(g) Write Q_{p} and R_{L} as Möbius transformations.

Exercise 2

Let $b \in \mathbb{C}$ and $\lambda>0$. Let T_{b} be the translation by b and let M_{λ} be the multiplication by λ.
(a) Describe the effect of $T_{b} \circ M_{\lambda} \circ T_{-b}$ geometrically.
(b) Describe the effect of $M_{\lambda} \circ T_{b} \circ M_{\lambda^{-1}}$ geometrically.
(c) Express the transformations in (a) and (b) as Möbius transformations.

Exercise 3

Given a group of matrices $\mathrm{G} \subseteq M^{n \times n}(\mathbb{C})$, let $Z_{\mathrm{G}}=\{g \in G: \forall h \in G: g h=h g\}$ be the center. Then PG is defined to be the group $\mathrm{G} / Z_{\mathrm{G}}$. Recall that for any field F and any $n \geq 1$,

$$
\begin{aligned}
\mathrm{GL}(n, F) & =\left\{g \in M^{n \times n}(F): \operatorname{det}(g) \neq 0\right\} \\
\mathrm{SL}(n, F) & =\left\{g \in M^{n \times n}(F): \operatorname{det}(g)=1\right\} .
\end{aligned}
$$

(a) Show that $\operatorname{PGL}(2, \mathbb{R}) \not \not 二 \operatorname{PSL}(2, \mathbb{R})$.
(b) Show that $\operatorname{PGL}(3, \mathbb{R}) \cong \operatorname{PSL}(3, \mathbb{R})$.
(c) What about $\operatorname{PGL}(n, \mathbb{R})$ and $\operatorname{PSL}(n, \mathbb{R})$ for $n \geq 4$?
(d) Show that $\operatorname{PGL}(n, \mathbb{C}) \cong \operatorname{PSL}(n, \mathbb{C})$ for all $n \geq 2$.

