Exercise Sheet 6

Exercise 1

- (a) Show that $M\ddot{o}b_+$ acts transitively on the set of clines, i.e. for any two clines ℓ, ℓ' there is $g \in M\ddot{o}b_+$ with $g\ell = \ell'$.
- (b) For $z \in \hat{\mathbb{C}}$, what is the point $z' \in \hat{\mathbb{C}}$ that lies on the opposite side of the Riemann sphere $S^2 \cong \hat{\mathbb{C}}$?
- (c) What are the clines in $\hat{\mathbb{C}}$ that correspond to great circles¹ on S^2 ? Which great circles correspond to lines? For those great circles that correspond to circles, how do their radii depend on their centers?

Exercise 2

Let $t \in \mathbb{R}$ and

$$U_t(z) = \frac{z}{1+tz}$$

(a) Consider the family of all clines tangent to the imaginary axis at the origin. Prove that U_t takes each member of this family to another one.

Hint: compute $U'_t(0)$ and consider its effect.

- (b) Consider the family of all circles tangent to the real axis at the origin. Prove that U_t preserves each member of this family but slides it along itself (as t varies).
- (c) Show these families of circles are perpendicular to one another wherever they meet.
- (d) Draw these families. Draw arrows to indicate the motion effected by U_t .

Exercise 3

Show that the set of all inversions in clines generate Möb.

 $^{^1\}mathrm{A}\ great\ circle\ on\ S^2$ is a circle that contains two opposite points