ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	31. Mar. 2023

Exercise Sheet 6

Exercise 1

(a) Show that Möb ${ }_{+}$acts transitively on the set of clines, i.e. for any two clines ℓ, ℓ^{\prime} there is $g \in$ Möb $_{+}$with $g \ell=\ell^{\prime}$.
(b) For $z \in \hat{\mathbb{C}}$, what is the point $z^{\prime} \in \hat{\mathbb{C}}$ that lies on the opposite side of the Riemann sphere $S^{2} \cong \hat{\mathbb{C}}$?
(c) What are the clines in $\hat{\mathbb{C}}$ that correspond to great circles $\mathbb{1}^{1}$ on S^{2} ? Which great circles correspond to lines? For those great circles that correspond to circles, how do their radii depend on their centers?

Exercise 2

Let $t \in \mathbb{R}$ and

$$
U_{t}(z)=\frac{z}{1+t z}
$$

(a) Consider the family of all clines tangent to the imaginary axis at the origin. Prove that U_{t} takes each member of this family to another one.

Hint: compute $U_{t}^{\prime}(0)$ and consider its effect.
(b) Consider the family of all circles tangent to the real axis at the origin. Prove that U_{t} preserves each member of this family but slides it along itself (as t varies).
(c) Show these families of circles are perpendicular to one another wherever they meet.
(d) Draw these families. Draw arrows to indicate the motion effected by U_{t}.

Exercise 3

Show that the set of all inversions in clines generate Möb.

[^0]
[^0]: ${ }^{1}$ A great circle on S^{2} is a circle that contains two opposite points

