Exercise Sheet 8

Exercise 1

- (a) Find an example of an elliptic Möbius transformation that preserves the unit disk.
- (b) Find an example of a hyperbolic Möbius transformation that preserves the unit disk.
- (c) Find an example of a parabolic Möbius transformation that preserves the unit disk.
- (d) Show that there is no loxodromic Möbius transformation that preserves the unit disk, except for the hyperbolic or elliptic ones.

Exercise 2

- (a) Find the stabilizer¹ of 0 in $M\ddot{o}b(B_1)$.
- (b) For a point $x \in B_1$, describe the stabilizer of x in $M\ddot{o}b(B_1)$ in terms of the group found in (a).
- (c) How many elements of $\text{M\"ob}(B_1)$ fix two points $x \neq y \in B_1$?

Exercise 3

Let 0 < t < 1 and K_t the Apollonian slide defined by

$$K_t(z) = \frac{z+t}{tz+1}.$$

- (a) Show that for all $s \in (-1, 1)$, $K_t(s) > s$.
- (b) Show that for all $z \in B_1$, $\lim_{n\to\infty} K_t^n(z) = 1$ and $\lim_{n\to-\infty} K_t^n(z) = -1$. Hint: It may help to see K_t as a one-parameter subgroup as in Sheet 7, *Exercise 1*.

¹The stabilizer of $x \in X$ in a group G acting on X is the subgroup $\{g \in G \colon g(x) = g\}$.