Exercise Sheet 9

Exercise 1

Let $s \leq t \in(-1,1)$ and define

$$
\operatorname{cr}(s, t):=\operatorname{cr}(t, s):=\frac{(t+1)(1-s)}{(s+1)(1-t)}
$$

(a) Explain how cr is related to the cross ratio $\left[z_{1}, z_{2} ; z_{3}, z_{4}\right]$ in class.
(b) Show that $\operatorname{cr}(s, t) \geq 1$ and $\operatorname{cr}(s, t)=1$ if and only if $t=s$.
(c) Show that for all $s, t, r \in(-1,1), \operatorname{cr}(s, r) \leq \operatorname{cr}(s, t) \operatorname{cr}(t, r)$.
(d) In view of (a) and (b), how could the cross-ratio cr be used to define a metric on the real interval $(-1,1)$.
(e) Check that the Apollonian slide $K_{t}: z \mapsto \frac{z+t}{t z+1}$ for $t \in(-1,1)$ is an isometry of $(-1,1)$ with the distance from (d), meaning $\forall x, y \in(-1,1), d(x, y)=$ $d\left(K_{t}(x), K_{t}(y)\right)$.

The metric defined on the subset of B_{1} will be expanded to the hyperbolic metric on B_{1}.

Exercise 2

(a) Identify $\operatorname{Möb}\left(B_{1}\right)$ with the set of all injective maps of the set $\{0,1,2\}$ into S^{1}.
(b) Show that $\operatorname{Möb}\left(B_{1}\right)$ is homeomorphic to an open subset of the 3-torus $S^{1} \times S^{1} \times S^{1}$. What set is excluded?
(c) The 3 -torus has the advantage that you can visualize it. It is a cube with its sides suitably identified. Try to draw a picture of the topology of $\operatorname{Möb}\left(B_{1}\right)$.
(d) Is $\operatorname{Möb}\left(B_{1}\right)$ connected? Is $\operatorname{PSL}(2, \mathbb{R})$ connected? Are they simply connected?

