Exercise Sheet 9

Exercise 1

Let $s \leq t \in (-1, 1)$ and define

$$\operatorname{cr}(s,t) := \operatorname{cr}(t,s) := \frac{(t+1)(1-s)}{(s+1)(1-t)}$$

- (a) Explain how cr is related to the cross ratio $[z_1, z_2; z_3, z_4]$ in class.
- (b) Show that $cr(s,t) \ge 1$ and cr(s,t) = 1 if and only if t = s.
- (c) Show that for all $s, t, r \in (-1, 1)$, $\operatorname{cr}(s, r) \leq \operatorname{cr}(s, t) \operatorname{cr}(t, r)$.
- (d) In view of (a) and (b), how could the cross-ratio cr be used to define a metric on the real interval (-1, 1).
- (e) Check that the Apollonian slide $K_t: z \mapsto \frac{z+t}{tz+1}$ for $t \in (-1,1)$ is an isometry of (-1,1) with the distance from (d), meaning $\forall x, y \in (-1,1), d(x,y) = d(K_t(x), K_t(y))$.

The metric defined on the subset of B_1 will be expanded to the hyperbolic metric on B_1 .

Exercise 2

- (a) Identify $M\ddot{o}b(B_1)$ with the set of all injective maps of the set $\{0, 1, 2\}$ into S^1 .
- (b) Show that $M\ddot{o}b(B_1)$ is homeomorphic to an open subset of the 3-torus $S^1 \times S^1 \times S^1$. What set is excluded?
- (c) The 3-torus has the advantage that you can visualize it. It is a cube with its sides suitably identified. Try to draw a picture of the topology of $M\"{o}b(B_1)$.
- (d) Is $M\"ob(B_1)$ connected? Is $PSL(2, \mathbb{R})$ connected? Are they simply connected?