
ETH Zürich
Prof. Dr. Tom Ilmanen

D-MATH
Raphael Appenzeller

Geometrie
12. May 2023

Solutions 11

Exercise 1
Use the hyperbolic version of Geogebra 1 to construct the following hyperbolic
objects. Play around with the positions of the points to get a feeling for the
geometry. As a challenge, these objects can also be constructed in the usual
Geogebra.2

(a) Construct 4 hypberolic lines that do not intersect pairwise.

(b) Place two points and construct the perpendicular bisector between them.

(c) Place three points. Find the center of the hyperbolic circle through these
points and use the circle tool to draw the circle. Compare the Euclidean
and the hyperbolic centerpoints of the circle.

(d) Construct a quadrilateral with three right angles and a fourth angle that
is strictly smaller than 90◦.

Solution:

(a) We can use the geodesics tool. The icon for it looks like this: .

We can place the points near the boundary, so that we have enough
place for the four hyperbolic lines.

1geogebra.org/classic/tHvDKWdC
2www.geogebra.org
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(b) There is a tool for perpendicular bisectors: , but one could also
construct it differently. The picture then looks like this:

(c) To find the midpoint of the circle, we can construct two perpendicular
bisectors. These intersect in the midpoint of the circle. We use the

circle tool to draw the circle.
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We notice that from our Euclidean perspective, the hyperbolic mid-
point is not in the middle of the circle. This makes intuitive sense,
since distances increase as we move towards the boundary.

(d) There is a useful tool , that draws the perpendicular to a line
at a point. We can use it to construct right angles. As long as the
last two sides intersect, the last angle is always automatically smaller
than π/2.
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Exercise 2
Which of the following pictures by M.C. Escher are based on hyperbolic geom-
etry?

Figure 1: Pictures by M.C. Escher, Source: https://mathstat.slu.edu/
escher/index.php/Hyperbolic_Geometry_Exercises.
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Solution:
It is 1, 4 and 6. In these pictures all the repeating patterns have the same
hyperbolic size.

Exercise 3
A hyperbolic circle with center p ∈ B1 and radius r > 0 is the set

Cp,r = {q ∈ B1 : dH(p, q) = r}.

(a) Show that hypberbolic circles are also Euclidean circles.

(b) Show that the Euclidean radius of the hyperbolic circle C0,r is tanh(r/2).

(c) Let x ∈ (0, 1). Find the hyperbolic center and the hyperbolic radius of the
hyperbolic circle containing the three points

0, x,
1 + i

2
x ∈ B1.

Solution:

(a) When the center is p = 0, the hyperbolic circles are Euclidean circles,
as the hyperbolic distance is invariant under rotation around 0. By
transitivity of Möb(B1) on the hyperbolic plane, we can find for every
center p ∈ B1 a transformation fp with fp(0) = p. Then Cp,r =
fp(C0,r). Since fp sends clines to clines, fp(C0,r) = Cp,r has to be a
cline. It cannot be a line, since it is contained in B1, hence it has to
be a circle.

(b) Let x ∈ (0, 1) ∩ C0,r be the unique point on the circle and on the
positive real axis. We have

r = dB1(0, x) = log([0, x; 1,−1]) = log

(
(−1) · (x+ 1)

1 · (x− 1)

)
We resolve

r = log

(
x+ 1

1− x

)
er =

x+ 1

1− x
(1− x)er = x+ 1

er − 1 = (1 + er)x

x =
er − 1

er + 1
=
er/2(er/2 − e−r/2)

er/2(er/2 + e−r/2)
=

sinh(r/2)

cosh(r/2)
= tanh(r/2),

so the Euclidean radius of C0,r is x = tanh(r/2).
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(c) Any circle is uniquely defined by three points, hence the (hyperbolic)
circle has to be equal to the Eucldidean circle with Euclidean center
x/2 and Euclidean radius x/2. Since the hyperbolic distance is invari-
ant under reflection along the real axis, the hyperbolic center point of
the circle has to lie on the real axis. Let p ∈ (0, 1) be the hyperbolic
center point. We know

dB1
(0, p) = dB1

(p, x).

We could use the cross ratio formula, or any other that we saw in
class, such as the one from Sheet 9, Exercise 1

(p+ 1)(1− 0)

(0 + 1)(1− p)
= dB1(0, p) = dB1(p, x) =

(x+ 1)(1− p)
(p+ 1)(1− x)

.

We solve for p

(p+ 1)2(1− x) = (x+ 1)(1− p)2

xp2 − 2p+ x = 0

p1,2 =
2±
√

4− 4x2

2x
=

1±
√

1− x2
x

and we know that 0 < p < 1, so

p =
1−
√

1− x2
x

is the hyperbolic center.

The hyperbolic distance is

dH(0, p) = log
1 + p

1− p
= log

x+ 1−
√

1− x2

x− 1 +
√

1− x2
· (x− 1)−

√
1− x2

(x− 1)−
√

1− x2

= log
x2 − 1 + 1− x2 +

√
1− x2(−x− 1− x+ 1)

x2 − 2x+ 1− 1 + x2

= log

√
1− x2
1− x

= log

√
(1− x)(1 + x)√
(1− x)(1− x)

= log

√
1 + x

1− x
=

1

2
log

1 + x

1− x
.

Exercise 4
A hyperbolic line is determined by its two points in the boundary ∂B1 = S1.

(a) Identify the set of hyperbolic lines as quotient of a subset of S1 × S1.

(b) Show that the set of hyperbolic lines (with the topology as a quotient of
a subset of S1 × S1) is homeomorphic to an open Möbius strip.
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Solution:

(a) We have a map {(x, y) ∈ S1 × S1 : x 6= y} → {hyperbolic lines},
sending (x, y) to the unique hyperbolic line with endpoints x and y.
Notice that this map is surjective, but not injective, as (x, y) and
(y, x) determine the same hyperbolic line. We thus have a a bijection

{hyperbolic lines} ∼= {(x, y) ∈ S1 × S1 : x 6= y}/{(x, y) ∼ (y, x)}.

(b) We can draw the torus S1×S1 as a square with opposite sides identi-
fied. Since the two endpoints of a geodesic line have to be distinct, we
remove the diagonal ∆ = {(x, x) ∈ S1×S1}. The quotient corresponds
to glueing the upper-left triangle to the lower bottom triangle by fold-
ing along the diagonal. Thus the space of hyperbolic lines can be
identified with the triangle {(x, y) : [0, 1]2 : x > y}/{(x, 0) ∼ (1, x)},
where the quotient comes from the fact that (x, 0) ∼ (x, 1) ∼ (1, x).
Intuitively we have a rightangled triangle where the hypothenuse is
not included and where the two catheta are identified as in the first
picture of the following figure.

To see that this is homeomorphic to a Möbius strip we cut along
y = 1−x to get two smaller triangles and now glue the original catheta
together. We obtain a square with two opposite sides identified, but
in a twist. This is exactly a Möbius strip.
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