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Exercise 1
Sketch the hypberbolic plane and three pairwise intersecting hyperbolic lines.
Sketch a fourth hyperbolic line which is ultraparallel to all previous three.

Solution:
Using the hyperbolic geogebra, we can draw for example:

Exercise 2
Let ` and `′ be two hyperbolic lines that have a common limit point p ∈ ∂B1 =
S1. Prove that there are sequences of points x1, x2, . . . ∈ ` and y1, y2, . . . ∈ `′
with limn→∞(xn) = p = limn→∞(yn), such that there is a constant C with

dH(xn, yn) ≤ Ce−dH(x1,xn) for all n ∈ N,

i.e. the distance between the hyperbolic lines ` and `′ converges to 0 exponen-
tially fast.

Hint: Use the Taylor expansion of cosh.

Solution:

Since Möb(B1) acts transitively on hyperbolic lines, we may assume that
` = (−1, 1) ⊆ B1. Up to rotating by 180◦, we may also assume that ` and
`′ have the common limit point p = 1. Next, by transitivity, we know that
` and `′ are related by a Möbius transformation and unless ` = `′, this
Möbius transformation has to be parabolic, as it fixes exactly one point
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(namely p) in the boundary (compare Sheet 10, exercise 2). We know an
explicit parabolic transformation (again from Sheet 10, exercise 2), namely

fb(z) =
(2i− b)z + b

−bz + (2i+ b)

for b ∈ R. We note that fb(p) = p = 1 and

fb(−1) =
−(2i− b) + b

b+ (2i+ b)
=
b− i
b+ i

and claim that for every point q ∈ S1 \ {1}, we can find b ∈ R such that
fb(−1) = q, namely:

q =
b− i
b+ i

q(b+ i) = b− i
b(q − 1) = −i(1 + q)

b = −i q + 1

q − 1
(we used q 6= 1)

If now q is the second endpoint of the geodesic `′, we can choose the b as
above to get fb(−1) = q. Since hyperbolic lines are determined by their
endpoints, we have fb(`) = `′.

So up to now, we have reduced the situation to the case that ` =
(−1, 1), p = 1 and `′ = fb(`) for some b ∈ R. Now consider t ∈ [0, 1) ⊆ `
and

fb(t) =
(2i− b)t+ b

−bt+ (2i+ b)
=
b(1− t) + 2ti

b(1− t) + 2i
∈ `′.

We want to calculate

dH(t, fb(t)) = arccosh

(
1 +

2|t− fb(t)|2

(1− |t|2)(1− |fb(t)|2)

)
for which we start with intermediate steps.

|t− fb(t)|2 =

∣∣∣∣b(1− t)t+ 2it− b(1− t)− 2ti

b(1− t) + 2i

∣∣∣∣2
=

∣∣∣∣ (t− 1)(t+ 1)b

b(1− t) + 2i

∣∣∣∣2
=

b2(1− t)4

b2(1− t)2 + 4
,

1− |t|2 = 1− t2

1− |fb(t)|2 =
b2(1− t)2 + 4− b2(1− t)2 − 4t2

b2(1− t)2 + 4
=

4(1− t2)
b2(1− t)2 + 4

.
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Plugging in, we get

dH(t, fb(t)) = arccosh

1 +
2 b2(1−t)4
b2(1−t)2+4

(1− t2) 4(1−t2)
b2(1−t)2+4


= arccosh

(
1 +

2b2(1− t)4

4(1− t2)2

)
= arccosh

(
1 +

b2(1− t)2

2(1 + t)2

)
=: arccosh(t̃).

Let x1 = 0. Then we have

dH(x1, t) = log
1 + t

1− t
.

We want to find a constant C such that

dH(t, fb(t)) ≤ Ce−dH(x1,t) = Ce− log 1+t
1−t = C

(
1 + t

1− t

)−1
= C

1− t
1 + t

.

Recall the Taylor series

cosh(d) =
ed + e−d

2
= 1 +

d2

2
+
d4

4!
+ . . . .

We see that taking C = b results in

t̃ = 1 +
b2(1− t)2

2(1 + t)2
≤ 1 +

1

2

(
C
1− t
1 + t

)2

+
1

4!

(
C
1− t
1 + t

)4

+ . . . = cosh

(
C
1− t
1 + t

)
Applying arccosh to both sides results in the required equation

dH(t, fb(t)) ≤ C
1− t
1 + t

= Ce−dH(x1,t).

The exercise was formulated in terms of sequences, we can just take a se-
quence like xn = 1− 1

n and yn = fb(xn) which satisfy the same exponential
convergence.

Exercise 3
(a) Prove that every hyperbolic triangle has angle sum less than 180◦.

(b) Show that there are hyperbolic triangles of arbitrary small positive interior
angle sum.

(c) Prove that there is a regular1 octagon in the hypberbolic plane, all of
whose angles are 45◦.

1An n-gon is regular if all its sides have the same lengths and the angles at all vertices is
the same.
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Solution:

(a) Since Möb(B1) acts transitively on B1, and preserves angles, we may
assume that one of the vertices of the triangle is 0. After applying
rotations we may also assume that one of the edges of the triangle
lies on the real axis. We know that two of the edges of the triangle
(which are segments of hyperbolic lines), are Euclidean straight line
segments. The last edge is a segment of a hyperbolic line that is a
Euclidean circle segment. The situation looks as follows.

O A

B

When we place a Euclidean straight line segment between A,B we
know that the interior angle sum of the Euclidean triangle OAB is
180◦. Since the Euclidean segment AB is also a secant of the circle
defining the hyperbolic line AB, we know that the hyperbolic angles
∠OAB and ∠OBA are smaller than the Euclidean angles. The angle
∠AOB is the same for Euclidean and hyperbolic, so in conclusion we
see that the hyperbolic angle sum is less than 180◦.

(b) As we let the three vertices of the triangle go towards the boundary,
the angle interior sum tends to 0. The extreme case is that of an ideal
triangle, whose vertices are all the way at ∞:

(c) We start with a circle centered at 0 and of Euclidean radius r ∈ (0, 1).
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We can find eight regularly spaced points on this circle (for example by
picking a point and then rotating it repeatedly by 45◦). These eight
points give rise to a regular hyperbolic octagon. We note that the
angles are all the same but depend continuously on r. As r → 1, the
angle becomes 0. As r → 0, the hyperbolic segments of the octagon
approximate Euclidean segments and thus the hyperbolic angle tends
to the Eucldiean angle of a octagon, which is 120◦. By adjusting r, we
can reach any angle between 0◦ and 120◦ for the hyperbolic octagon,
in particular, there exists r such that the angle is 45◦, compare also
Figure 1.

Exercise 4
Consider the regular hyperbolic octagon all of whose angles are 2π/8 from Exer-
cise 3(c). Label the sides of the hyperbolic octagon by the letters a, b, a−1, b−1,
c, d, c−1, d−1 as in Figure 1. Now for each letter in {a, b, c, d} glue together the
two sides labelled by it and its inverse, respecting the orientation2. Denote the
resulting object by X.

(a) Prove that all eight vertices of the hyperbolic octagon get identified into
one point in X.

(b) Show that for every x ∈ X, we can identify a neighborhood of x with a
neighborhood of a point in the hyperbolic plane. This way we can give X
a local hyperbolic metric, we then say that X is a hyperbolic surface.

(c) Show that X is homeomorphic to a double torus.

Solution:

(a) Label the points as follows:

a

ba−1

b−1

c

d c−1

d−1

p1

p2

p3

p4

p5

p6

p7

p8

2This construction is analogous to the construction of a torus by identifying the opposite
sides of a square.
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a

ba
−1

b
−1

c

d c
−1

d
−1

Figure 1: A hyperbolic octagon whose sides are to be identified.

The point p1 gets identified with p4, when we glue a. p4 gets identified
with p3 when we glue b. p3 gets identifed with p2 when we glue a, p2
gets identified with p5 when we glue b, p5 gets identified with p8 when
we glue c, p8 gets identified with p7 when we glue d, p7 gets identified
with p6 when we glue c, and finally p6 gets identified again with p1
when we glue along d.

(b) For points in the interior of the octagon, they already have a neigh-
borhood which is a neighborhood of the hyperbolic plane. For points
on the interior of one of the sides of the octagon, they have half a hy-
perbolic neighborhood, but in X, when two sides are glued together,
these points have a neighborhood which is isometric to a neighborhood
of the hyperbolic plane.

Finally due to (a), there is one point in X whose preimage is all the
vertices of the octagon. Since the angle in the octagon is 2π/8 and
there are 8 pieces to be glued together, this again gives a full nice
hyperbolic neighborhood.

(c) Here is a proof by pictures of this exercise:
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