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Solutions 2

Exercise 1
Identify R2 ∼= C.

(a) Show that the inverse function

C \{0} → C \{0}
z 7→ 1/z

is an orientation-preserving map.

(b) Define I : Ĉ→ Ĉ by extending the inverse to have suitable values at 0 and
at∞. Prove that I is a homeomorphism of Ĉ with respect to the topology
defined in class.

Solution:

(a) For z = x+ iy, we have

1

z
=

1

x+ iy

x− iy
x− iy

=
x− iy
x2 + y2

,

so the map can be reformulated as a real function

f : R2 \{0} → R2 \{0}

(x, y) 7→
(

x

x2 + y2
,
−y

x2 + y2

)
= (f1(x, y), f2(x, y))

for which we can calculate the derivative at (a, b) ∈ R2 \{0} as

Df(a, b) =

(
∂f1
∂x (a, b) ∂f1

∂y (a, b)
∂f1
∂y (a, b) ∂f2

∂y (a, b)

)
=

(
b2−a2

(a2+b2)2
−2ab

(a2+b2)2

2ab
(a2+b2)2

b2−a2

(a2+b2)2

)

with positive determinant

1

(a2 + b2)2
((b2 − a2)2 + 4a2b2) =

1

(a2 + b2)2
(a4 + 2a2b2 + b4) = 1

which means that f is orientation-preserving.

Alternatively we could use the theorem from the lecture, that holo-
morphic functions with f ′(z) 6= 0 are orientation-preserving at z.

(b) We define I(0) = ∞ and I(∞) = 0. It is clear that I is a bijection,
in fact I−1 = I. We thus just have to show that I is continuous. The
topology on Ĉ defined in class is the one-point-compactification, whose
open sets consist of the open sets of C as well as any complement of a
closed bounded subset of C together with the point∞. We know from
analysis, that the map z 7→ 1/z is continuous on C \{0}. To show that
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I is continuous everywhere we have to show that preimages of open
sets are open.

Fact 1. By continuity of the map z 7→ 1/z on C \{0}, we know that
images of open balls B(z, r) (with r < |z|) are contained in open balls
again. In particular, open sets U ⊆ C \{0} are sent to open sets under
I.

Fact 2. An open ball B(0, r) around 0 is sent to I(B(0, r)) = {z ∈
C : |z| > 1/r} ∪ {0}, whose complement is bounded (by 1/r) and
closed (since I(B(0, r) \ {0}) is open). Hence I(B(0, r)) is open in the
one-point-compactification Ĉ.
Fact 3. Starting with an open set U ⊆ Ĉ containing ∞, we know by
definition that its complement C is a closed bounded subset of C.
Let R > 0 be such that C ⊆ B(0, R). Then B(0, 1/R) is contained
in I(U), since |z| ≥ R, if and only if |I(z)| < 1R. Since C is closed,
C \C = U \ {∞} is open. Thus I(U \ {∞}) is open and so is I(U \
{∞}) ∪ I({∞}) = I(U).

By these three facts, we can conclude that the image of every open
subset U ⊆ Ĉ is open, and hence I is continuous.

Exercise 2
Consider the three Möbius transformations Ĉ→ Ĉ

I : z 7→ 1

z
J : z 7→ 1

z̄
C : z 7→ z̄.

(a) Describe the group generated by I, J and C.

(b) Describe the actions of I, J and C on the Riemann sphere considered as
the round sphere S2.

(c) Which of these maps are orientation-preserving? Which are orientation-
reversing?

Solution:

(a) We have id = I2 = J2 = C2 adn J ◦I = C, I ◦C = J and C ◦J = I, so
the group generated by I, J, C consist of the four elements id, I, J, C.
Its group table is given by
◦ id I J C
id id I J C
I I id C J
J J C id I
C C J I id

and as an abstract group it is isomorphic to the Klein four-group
Z /2Z×Z /2Z.
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(b) The stereographic projection can be used to translate between the
sphere S2 and Ĉ. The maps I and J flip the interior of the unit circle
with the outside, this corresponds to flipping the upper hemisphere
of S2 with the lower hemisphere. For a point z = x + iy on the unit
circle, we have

I(z) =
1

x+ iy

x− iy
x− iy

=
x− iy
|z|2

= z̄,

so it flips the imaginary axis. On the sphere S2 the action of I corre-
sponds to reflecting along the equator, and then also reflecting on the
great-circle corresponding to the real axis on Ĉ. Compare figure 1.

For a point z = x+ iy on the unit circle, we also have

J(z) =
1

x− iy
x+ iy

x+ iy
=
x+ iy

|z|2
= z,

which means that J fixes the point on the unit circle, i.e. the action
of J on S2 is just the reflection on the equator.

Finally, C flips C along the real axis, this correponds to a reflection
an the great circle corresponding to the real axis in S2.

(c) I is an orientation-preserving Möbius transformation, while J and C
are orientation-reversing.

Figure 1: The sphere S2 with the equator and a great circle corresponding to
the real axis together with ∞ in Ĉ.

3



ETH Zürich
Prof. Dr. Tom Ilmanen

D-MATH
Raphael Appenzeller

Geometrie
3. Mar. 2023

Exercise 3
(a) Give an example of a real affine map R2 → R2 that is not a similarity.

(b) Classify the similarities of R2 in terms of their fixed points.

(c) Show that the group of similarities of the plane Sim(R2) has the structure
of a semidirect product Sim(R2) = Sim+(R2) o Z /2Z.

Solution:

(b) The map (x, y) 7→ (2x, y) is a real affine map (it is the multiplication
with the diagonal matrix Diag(2, 1) and translation by vector v = 0),
but it is not a similarity, as the distance d(0, (1, 0)) is scaled by a
factor of 2, while the distance d(0, (0, 1)) is only scaled by a factor of
1.

One can show that a real affine map x 7→ Ax+v is a similarity exactly
when A is an orthogonal matrix.

(c) There are four cases.

1. If a similarity fixes all points, it is the identity.

2. If it fixes at least two points, then the scaling factor has to be 1,
i.e. the similarity is an isometry. By geometric considerations it then
also has to fix the whole line spanned by the two points. An isometry
fixing a whole line pointwise has to be a reflection along that line (or
the identity).

3. If a similarity fixes exactly one point, it could be a rotation (or
reflection) followed by any dilation.

4. A similarity could also fix no points, it could then be a translation
or a mix of rotations, dilations and translations.

(c) We note that Sim+(R2) is a normal subgroup of Sim(R2), since con-
jugation sends an orientation-preserving element to an orientation-
preserving element. We now take an orientation reversing similarity,
such as s : z 7→ z̄ and view the group generated by s as Z /2Z, (since
s2 = id). We first have to show that every similarity is a combina-
tion of an orientation-preserving similarity and either the identity or
s. Indeed, this is the case, since similarities are either orientation-
preserving (in which case we are done) or orientation-reversing, in
which case, we can precompose s to obtain an orientation preserving
similarity. In this sense we have as sets

Sim+(R2)× Z /2Z ≡ Sim(R2)

(ϕ, id) 7→ ϕ

(ϕ, t) 7→ ϕ ◦ s

However Sim(R2) viewed as a group is not the direct product, since
for example (z 7→ z − i, id) = (id, s) ◦ (z 7→ z + i, s) 6= (z 7→ z + i, s2).
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To give this set the structure of a semidirect product, we have to
define an action of Z /2Z on Sim+(R2), which we choose to be the
conjugation: x.ϕ := x◦ϕ◦x−1 = x◦ϕ◦x for x ∈ {id, s} = Z /2Z and
ϕ ∈ Sim+(R2). With this action, the multiplication in the semidirect
product is defined as

◦o : (Sim+(R2) o Z /2Z)× (Sim+(R2) o Z /2Z)→ Sim+(R2) o Z /2Z
((ϕ, x), (ψ, y)) 7→ (ϕ ◦ x.ψ, x ◦ y)

for x, y ∈ Z /2Z and ϕ,ψ ∈ Sim+(R2). We verify that this is the cor-
rect group operation corresponding to the group operation in Sim(R2):
If (ϕ, x) ≡ ϕ ◦ x and (ψ, y) ≡ ψ ◦ y are elements of Sim(R2), we have

(ϕ, x) ◦o (ψ, y) = (ϕ ◦ x.ψ, x ◦ y) = (ϕ ◦ x ◦ ψ ◦ x−1, x ◦ y)

≡ ϕ ◦ x ◦ ψ ◦ x−1 ◦ x ◦ y
= (ϕ ◦ x) ◦ (ψ ◦ y)

which is the correct group operation. Thus we have shown that
Sim(R2) = Sim+(R2) o Z /2Z.

5


