Solutions 2

Exercise 1

Identify $\mathbb{R}^{2} \cong \mathbb{C}$.
(a) Show that the inverse function

$$
\begin{aligned}
\mathbb{C} \backslash\{0\} & \rightarrow \mathbb{C} \backslash\{0\} \\
z & \mapsto 1 / z
\end{aligned}
$$

is an orientation-preserving map.
(b) Define $I: \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ by extending the inverse to have suitable values at 0 and at ∞. Prove that I is a homeomorphism of $\widehat{\mathbb{C}}$ with respect to the topology defined in class.

Solution:

(a) For $z=x+i y$, we have

$$
\frac{1}{z}=\frac{1}{x+i y} \frac{x-i y}{x-i y}=\frac{x-i y}{x^{2}+y^{2}},
$$

so the map can be reformulated as a real function

$$
\begin{aligned}
f: \mathbb{R}^{2} \backslash\{0\} & \rightarrow \mathbb{R}^{2} \backslash\{0\} \\
(x, y) & \mapsto\left(\frac{x}{x^{2}+y^{2}}, \frac{-y}{x^{2}+y^{2}}\right)=\left(f_{1}(x, y), f_{2}(x, y)\right)
\end{aligned}
$$

for which we can calculate the derivative at $(a, b) \in \mathbb{R}^{2} \backslash\{0\}$ as

$$
D f(a, b)=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x}(a, b) & \frac{\partial f_{1}}{\partial y}(a, b) \\
\frac{\partial f_{1}}{\partial y}(a, b) & \frac{\partial f_{2}}{\partial y}(a, b)
\end{array}\right)=\left(\begin{array}{cc}
\frac{b^{2}-a^{2}}{\left(a^{2}+b^{2}\right)^{2}} & \frac{-2 a b}{\left(a^{2}+b^{2}\right)^{2}} \\
\frac{2 a b}{\left(a^{2}+b^{2}\right)^{2}} & \frac{b^{2}-a^{2}}{\left(a^{2}+b^{2}\right)^{2}}
\end{array}\right)
$$

with positive determinant

$$
\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left(\left(b^{2}-a^{2}\right)^{2}+4 a^{2} b^{2}\right)=\frac{1}{\left(a^{2}+b^{2}\right)^{2}}\left(a^{4}+2 a^{2} b^{2}+b^{4}\right)=1
$$

which means that f is orientation-preserving.
Alternatively we could use the theorem from the lecture, that holomorphic functions with $f^{\prime}(z) \neq 0$ are orientation-preserving at z.
(b) We define $I(0)=\infty$ and $I(\infty)=0$. It is clear that I is a bijection, in fact $I^{-1}=I$. We thus just have to show that I is continuous. The topology on $\hat{\mathbb{C}}$ defined in class is the one-point-compactification, whose open sets consist of the open sets of \mathbb{C} as well as any complement of a closed bounded subset of \mathbb{C} together with the point ∞. We know from analysis, that the map $z \mapsto 1 / z$ is continuous on $\mathbb{C} \backslash\{0\}$. To show that

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	3. Mar. 2023

I is continuous everywhere we have to show that preimages of open sets are open.
Fact 1 . By continuity of the map $z \mapsto 1 / z$ on $\mathbb{C} \backslash\{0\}$, we know that images of open balls $B(z, r)$ (with $r<|z|$) are contained in open balls again. In particular, open sets $U \subseteq \mathbb{C} \backslash\{0\}$ are sent to open sets under I.
Fact 2. An open ball $B(0, r)$ around 0 is sent to $I(B(0, r))=\{z \in$ $\mathbb{C}:|z|>1 / r\} \cup\{0\}$, whose complement is bounded (by $1 / r$) and closed (since $I(B(0, r) \backslash\{0\})$ is open). Hence $I(B(0, r))$ is open in the one-point-compactification $\widehat{\mathbb{C}}$.
Fact 3. Starting with an open set $U \subseteq \widehat{\mathbb{C}}$ containing ∞, we know by definition that its complement C is a closed bounded subset of \mathbb{C}. Let $R>0$ be such that $C \subseteq B(0, R)$. Then $B(0,1 / R)$ is contained in $I(U)$, since $|z| \geq R$, if and only if $|I(z)|<1 \mathbb{R}$. Since C is closed, $\mathbb{C} \backslash C=U \backslash\{\infty\}$ is open. Thus $I(U \backslash\{\infty\})$ is open and so is $I(U \backslash$ $\{\infty\}) \cup I(\{\infty\})=I(U)$.
By these three facts, we can conclude that the image of every open subset $U \subseteq \widehat{\mathbb{C}}$ is open, and hence I is continuous.

Exercise 2

Consider the three Möbius transformations $\widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$

$$
I: z \mapsto \frac{1}{z} \quad J: z \mapsto \frac{1}{\bar{z}} \quad C: z \mapsto \bar{z}
$$

(a) Describe the group generated by I, J and C.
(b) Describe the actions of I, J and C on the Riemann sphere considered as the round sphere S^{2}.
(c) Which of these maps are orientation-preserving? Which are orientationreversing?

Solution:

(a) We have id $=I^{2}=J^{2}=C^{2} \operatorname{adn} J \circ I=C, I \circ C=J$ and $C \circ J=I$, so the group generated by I, J, C consist of the four elements id, I, J, C. Its group table is given by

\circ	id	I	J	C
id	id	I	J	C
I	I	id	C	J
J	J	C	id	I
C	C	J	I	id

and as an abstract group it is isomorphic to the Klein four-group $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
(b) The stereographic projection can be used to translate between the sphere S^{2} and $\widehat{\mathbb{C}}$. The maps I and J flip the interior of the unit circle with the outside, this corresponds to flipping the upper hemisphere of S^{2} with the lower hemisphere. For a point $z=x+i y$ on the unit circle, we have

$$
I(z)=\frac{1}{x+i y} \frac{x-i y}{x-i y}=\frac{x-i y}{|z|^{2}}=\bar{z},
$$

so it flips the imaginary axis. On the sphere S^{2} the action of I corresponds to reflecting along the equator, and then also reflecting on the great-circle corresponding to the real axis on $\widehat{\mathbb{C}}$. Compare figure 1 .
For a point $z=x+i y$ on the unit circle, we also have

$$
J(z)=\frac{1}{x-i y} \frac{x+i y}{x+i y}=\frac{x+i y}{|z|^{2}}=z,
$$

which means that J fixes the point on the unit circle, i.e. the action of J on S^{2} is just the reflection on the equator.
Finally, C flips \mathbb{C} along the real axis, this correponds to a reflection an the great circle corresponding to the real axis in S^{2}.
(c) I is an orientation-preserving Möbius transformation, while J and C are orientation-reversing.

Figure 1: The sphere S^{2} with the equator and a great circle corresponding to the real axis together with ∞ in $\hat{\mathbb{C}}$.

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	3. Mar. 2023

Exercise 3

(a) Give an example of a real affine map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that is not a similarity.
(b) Classify the similarities of \mathbb{R}^{2} in terms of their fixed points.
(c) Show that the group of similarities of the plane $\operatorname{Sim}\left(\mathbb{R}^{2}\right)$ has the structure of a semidirect product $\operatorname{Sim}\left(\mathbb{R}^{2}\right)=\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right) \rtimes \mathbb{Z} / 2 \mathbb{Z}$.

Solution:

(b) The map $(x, y) \mapsto(2 x, y)$ is a real affine map (it is the multiplication with the diagonal matrix $\operatorname{Diag}(2,1)$ and translation by vector $v=0)$, but it is not a similarity, as the distance $d(0,(1,0))$ is scaled by a factor of 2 , while the distance $d(0,(0,1))$ is only scaled by a factor of 1.

One can show that a real affine map $x \mapsto A x+v$ is a similarity exactly when A is an orthogonal matrix.
(c) There are four cases.

1. If a similarity fixes all points, it is the identity.
2. If it fixes at least two points, then the scaling factor has to be 1 , i.e. the similarity is an isometry. By geometric considerations it then also has to fix the whole line spanned by the two points. An isometry fixing a whole line pointwise has to be a reflection along that line (or the identity).
3. If a similarity fixes exactly one point, it could be a rotation (or reflection) followed by any dilation.
4. A similarity could also fix no points, it could then be a translation or a mix of rotations, dilations and translations.
(c) We note that $\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right)$ is a normal subgroup of $\operatorname{Sim}\left(\mathbb{R}^{2}\right)$, since conjugation sends an orientation-preserving element to an orientationpreserving element. We now take an orientation reversing similarity, such as $s: z \mapsto \bar{z}$ and view the group generated by s as $\mathbb{Z} / 2 \mathbb{Z}$, (since $s^{2}=\mathrm{id}$). We first have to show that every similarity is a combination of an orientation-preserving similarity and either the identity or s. Indeed, this is the case, since similarities are either orientationpreserving (in which case we are done) or orientation-reversing, in which case, we can precompose s to obtain an orientation preserving similarity. In this sense we have as sets

$$
\begin{aligned}
\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right) \times \mathbb{Z} / 2 \mathbb{Z} & \equiv \operatorname{Sim}\left(\mathbb{R}^{2}\right) \\
(\varphi, \mathrm{id}) & \mapsto \varphi \\
(\varphi, t) & \mapsto \varphi \circ s
\end{aligned}
$$

However $\operatorname{Sim}\left(\mathbb{R}^{2}\right)$ viewed as a group is not the direct product, since for example $(z \mapsto z-i, \mathrm{id})=(\mathrm{id}, s) \circ(z \mapsto z+i, s) \neq\left(z \mapsto z+i, s^{2}\right)$.

To give this set the structure of a semidirect product, we have to define an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right)$, which we choose to be the conjugation: $x . \varphi:=x \circ \varphi \circ x^{-1}=x \circ \varphi \circ x$ for $x \in\{\mathrm{id}, s\}=\mathbb{Z} / 2 \mathbb{Z}$ and $\varphi \in \operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right)$. With this action, the multiplication in the semidirect product is defined as

$$
\begin{aligned}
\circ_{\rtimes}:\left(\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right) \rtimes \mathbb{Z} / 2 \mathbb{Z}\right) \times\left(\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right) \rtimes \mathbb{Z} / 2 \mathbb{Z}\right) & \rightarrow \operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right) \rtimes \mathbb{Z} / 2 \mathbb{Z} \\
((\varphi, x),(\psi, y)) & \mapsto(\varphi \circ x \cdot \psi, x \circ y)
\end{aligned}
$$

for $x, y \in \mathbb{Z} / 2 \mathbb{Z}$ and $\varphi, \psi \in \operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right)$. We verify that this is the correct group operation corresponding to the group operation in $\operatorname{Sim}\left(\mathbb{R}^{2}\right)$: If $(\varphi, x) \equiv \varphi \circ x$ and $(\psi, y) \equiv \psi \circ y$ are elements of $\operatorname{Sim}\left(\mathbb{R}^{2}\right)$, we have

$$
\begin{aligned}
(\varphi, x) \circ \rtimes(\psi, y) & =(\varphi \circ x \cdot \psi, x \circ y)=\left(\varphi \circ x \circ \psi \circ x^{-1}, x \circ y\right) \\
& \equiv \varphi \circ x \circ \psi \circ x^{-1} \circ x \circ y \\
& =(\varphi \circ x) \circ(\psi \circ y)
\end{aligned}
$$

which is the correct group operation. Thus we have shown that $\operatorname{Sim}\left(\mathbb{R}^{2}\right)=\operatorname{Sim}_{+}\left(\mathbb{R}^{2}\right) \rtimes \mathbb{Z} / 2 \mathbb{Z}$.

