Solutions 3

Exercise 1

- (a) Show that orientation-preserving Möbius transformations $\hat{\mathbb{C}} \to \hat{\mathbb{C}}$ have exactly either one or two fixed points, or are the identity.
- (b) Give examples of orientation-preserving Möbiustransformations with one (resp. two) fixed points.
- (c) Draw a picture of how the Möbiustransformations from (b) act on $\hat{\mathbb{C}}$.
- (d) Does the statement of (a) also hold for orientation-reversing Möbius transformations?

Solution:

(a) Let f be a orientation-preserving Möbius transformation

$$f(z) = \frac{az+b}{cz+d}$$

with $ad - bc \neq 0$.

We are first careful with ∞ . We note that ∞ can only be a fixed point of f, when c = 0. In this case, any other fixed point satisfies

$$\frac{a}{d}z + \frac{b}{d} = z$$

which means that there is either NO second fixed point (if a/d = 1 and $b/d \neq 0$), or ALL points are fixed (if a/d = 1 and b/d = 0), or (if $a/d \neq 1$) at most ONE second fixed point, namely z = b/(d - a).

If ∞ is no fixed point, $(c \neq 0)$, then any fixed point is described by the equality

$$\frac{az+b}{cz+d} = z$$

and since $z \neq \infty$, we know that $cz + d \neq 0$, hence

$$az + b = cz2 + dz$$
$$0 = cz2 + (d - a)z - b$$

which is a quadratic equation and thus has exactly one or two solutions over \mathbb{C} .

(b) Examples of Möbius transformations with one fixed point are $z \mapsto z+1$, where the fixed point is ∞ , or $z \mapsto z/(z+1)$, where the fixed point is 0.

Examples with two fixed points could be $z \mapsto 2z$, where the fixed points are ∞ and 0, or $z \mapsto 1/z$ with fixed points ± 1 .

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	10. Mar. 2023

- (c) See figures 2 and 1.
- (d) No, statement (a) may not hold, as orientation reversing maps may aso fix circles or lines, for example $z \mapsto \overline{z}$ fixes the real axis.

Figure 1: On the left, the map $z \mapsto z+1$ with fixed point ∞ is illustrated. On the right, the function $z \mapsto z/(1+z)$ is illustrated by means of showing the domain on the left and the target on the right. The fixed point is 0.

Figure 2: On the left, the map $z \mapsto 2z$ with fixed points ∞ and 0 is illustrated. On the right, the function $z \mapsto 1/z$ is illustrated by means of showing the domain on the left and the target on the right. The fixed points are 1, -1.

Exercise 2

- (a) Show that the group of Möbius transformations Möb acts transitively on $\hat{\mathbb{C}}$, i.e. for any $x, y \in \hat{\mathbb{C}}$ there is a $g \in M$ öb such that g(x) = y.
- (b) Determine all the combinations of coefficients *a*, *b*, *c*, *d* such that the corresponding Möbiustransformation is the identity.

(c) Find all orientation-preserving Mobius transformations $f\colon\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ that send

 $\infty\mapsto i\mapsto 0\mapsto -i\mapsto\infty.$

(d) What are the possible values for f(1) under a Mobius transformation as in (c)?

Solution:

(a) We first show that there is a Möbius transformation sending $0 \in \hat{\mathbb{C}}$ to any point $p \in \hat{\mathbb{C}}$. If $p \in \mathbb{C}$, then we take the Möbiustransformation

$$z \mapsto \frac{1z+p}{0z+1},$$

if $p = \infty$ we can take

$$z \mapsto \frac{0z+1}{1z+0}.$$

If we now want to send p to q, we first take the inverse of the matrix above to send p to 0 and we then use a matrix as above again to take 0 to q. Since groups of maps on sets always act on the sets, we can compose these two group elements to get one that sends p to q.

(b) We have

$$z = \frac{az+b}{cz+d}$$

for all $z \in \hat{\mathbb{C}}$ and plug in a few points:

For z = 0, we obtain b = 0. For $z = \infty$ we obtain $a/c = \infty$, i.e. c = 0. Using these two facts we get that z = az/d, hence we also need a/d = 1. In fact all Möbius transformations with a, b = 0, c = 0, d that satisfy $a = d \neq 0$ fix all points of $\hat{\mathbb{C}}$ (the condition $ad - bc \neq 0$ is satisfied automatically).

It may be a good exercise to try to translate everything in terms of matrices.

(c) Let $a, b, c, d \in \mathbb{C}$ such that

$$f\colon z\mapsto \frac{az+b}{cz+d}$$

is a orientation-preserving Möbiustransformation that sends $\infty \mapsto i \mapsto 0 \mapsto -i \mapsto \infty$. We plug in ∞ to get a/c = i. We plug in i to get ai + b = 0. We plug in 0 to get b/d = -i and finally we plug in -i to get d = ic. From the first and fourth result we get a = d. From a = ci and b = -ai we get b = c. Therefore f must be of the form

$$z \mapsto \frac{az - ai}{-aiz + a}$$

We have $ad - bc = a^2 - (-ai)^2 = 2a^2$, hence this is a Möbius transformation for all $a \neq 0$. For any $a \neq 0$ this function sends $\infty \mapsto i \mapsto 0 \mapsto -i \mapsto \infty$.

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	10. Mar. 2023

(d) We plug in

$$f(1) = \frac{a1 - ai}{-ai1 + a} = 1.$$

This means that any Möbius transformation that sends $\infty \mapsto i \mapsto 0 \mapsto -i \mapsto \infty$ fixes the point 1.

Exercise 3

Answer the questions (a) - (e) for the functions (1) - (7). All functions are continuous functions of the Riemann-sphere $\hat{\mathbb{C}}$. For (1) - (5) we have $f(\infty) = \infty$.

- (a) Find the fixed point set $\{z \in \hat{\mathbb{C}} : f_i(z) = z\}$.
- (b) Does f_i preserve the unit disk?
- (c) Is f_i an affine map, when restricted to $\mathbb{C} \cong \mathbb{R}^2$?
- (d) Is f_i a similarity, when restricted to \mathbb{C} ?
- (e) If f_i orientation-preserving or orientation-reversing?
- (1) $f_1: z \mapsto z + a$, where $a \in \mathbb{C}$ fixed.
- (2) $f_2: z \mapsto rz$, where r > 0 fixed.
- (3) $f_3: z \mapsto e^{i\varphi} z$, where $\varphi \in [0, 2\pi)$ fixed.
- (4) $f_4: z \mapsto \overline{z}$.
- (5) $f_5: z \mapsto z^2$.
- (6) $f_6: z \mapsto \frac{z}{|z|^2}$, where $f(\infty) = 0$ and $f(0) = \infty$.
- (7) $f_7: z \mapsto \frac{1}{z}$, where $f(\infty) = 0$ and $f(0) = \infty$.

Solution:

Let F(f) be the fixed point set. We use the notation $z = r \cdot e^{i\varphi} = x + iy$ for the complex numbers.

- (1) $F(f_1) = \{\infty\}$, or $F(f_1) = \hat{\mathbb{C}}$, when a = 0. The unit disk is not preserved, except when a = 0. Yes, $f_1(z) = \operatorname{Id} z + a$ and hence is a affine map. Translations are isometries, hence similarities. Yes, translations are orientation-preserving.
- (2) $F(f_2) = \{0, \infty\}$, or $F(f_2) = \hat{\mathbb{C}}$, when r = 1. The unit disk is not preserved, except when r = 1. Yes, $f_2(z) = \text{Diag}(r, r)z + 0$ is an affine map. Yes, scalings are similarities and yes, scalings preserve orientation.

(3) This is a rotation around 0 by the angle φ . We have $F(f_3) = \{0, \infty\}$, or $F(f_3) = \hat{\mathbb{C}}$, when $\varphi = 0$. The unit disk is preserved. Yes, it is an affine map:

$$f_3(z) = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} z + 0.$$

Yes, rotations are isometries, hence similarities and yes, rotations preserve orientation.

(4) This is a reflection along the real axis. We have $F(f_4) = \{z \in \mathbb{C} : \operatorname{Im}(z) = 0\} \cup \{\infty\}$, the real axis. The unit disk is preserved. It is an affine transformation:

$$f_3(z) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} z + 0$$

Yes, reflections are isometries, hence similarities. Reflections are orientation-reversing.

(5) We calculate f₅(re^{iφ}) = r²e^{i2φ}. For z to be a fixed point, we need r = 1,0 or ∞ and φ = 2φ. These two conditions are satisfied for F(f₅) = {0,1,∞}. Yes, the unit disk is preserved, but is sent to itself twice.

No, this function cannot be represented as an affine map. As $f_5(0) = 0$, it would need to be a linear map, if it was affine. Linear maps are determined by the image of a base such as $\{1, i\}$, so since $f_5(1) = 1$ and $f_5(i) = -1$, linearity would then give that $f_5(1+i) = 0$, but this is not so.

The function is not a similarity, this can be seen for r > 0, as $d(0, r) = r \cdot d(f(0), f(r))$, hence there is no constant scaling factor.

The map is orientation preserving everywhere except at 0 and ∞ , where it is not smooth.

(6) This is the inversion on the circle. We have $f_6(z) = z$ if and only if $|z|^2 = 1$, so |z| = 1, so $F(f_6) = \{z \in \mathbb{C} : |z| = 1\}$ is the unit circle. The interior of the unit circle is sent to the exterior, hence the unit disk is not preserved.

The map is not an affine map or a similarity (its restriction on \mathbb{C} is not even well defined). The map f_6 is orientation-reversing, as it is a reflection along a circle.

(7) This function is similar to (6). We can describe it as an inversion on the circle followed by a reflection $z \mapsto \overline{z}$: $f_7 = f_4 \circ f_6$. We see that $f_7(z) = z$ if and only if $z^2 = 1$. This holds for z = 1 and z = -1. Therefore $F(f_7) = \{-1, 1\}$. Similar to f_6 , the unit circle is preserved, but not the unit disk. f_7 cannot be an affine map nor a similarity. As f_7 is the composition of two orientation-reversing maps, it is orientation preserving.