Solutions 3

Exercise 1

(a) Show that orientation-preserving Möbius transformations $\hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ have exactly either one or two fixed points, or are the identity.
(b) Give examples of orientation-preserving Möbiustransformations with one (resp. two) fixed points.
(c) Draw a picture of how the Möbiustransformations from (b) act on $\hat{\mathbb{C}}$.
(d) Does the statement of (a) also hold for orientation-reversing Möbius transformations?

Solution:

(a) Let f be a orientation-preserving Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}
$$

with $a d-b c \neq 0$.
We are first careful with ∞. We note that ∞ can only be a fixed point of f, when $c=0$. In this case, any other fixed point satisfies

$$
\frac{a}{d} z+\frac{b}{d}=z
$$

which means that there is either NO second fixed point (if $a / d=1$ and $b / d \neq 0$), or ALL points are fixed (if $a / d=1$ and $b / d=0$), or (if $a / d \neq 1)$ at most ONE second fixed point, namely $z=b /(d-a)$.
If ∞ is no fixed point, $(c \neq 0)$, then any fixed point is described by the equality

$$
\frac{a z+b}{c z+d}=z
$$

and since $z \neq \infty$, we know that $c z+d \neq 0$, hence

$$
\begin{aligned}
a z+b & =c z^{2}+d z \\
0 & =c z^{2}+(d-a) z-b
\end{aligned}
$$

which is a quadratic equation and thus has exactly one or two solutions over \mathbb{C}.
(b) Examples of Möbius transformations with one fixed point are $z \mapsto$ $z+1$, where the fixed point is ∞, or $z \mapsto z /(z+1)$, where the fixed point is 0 .
Examples with two fixed points could be $z \mapsto 2 z$, where the fixed points are ∞ and 0 , or $z \mapsto 1 / z$ with fixed points ± 1.

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	10. Mar. 2023

(c) See figures 2 and 1 .
(d) No, statement (a) may not hold, as orientation reversing maps may aso fix circles or lines, for example $z \mapsto \bar{z}$ fixes the real axis.

Figure 1: On the left, the map $z \mapsto z+1$ with fixed point ∞ is illustrated. On the right, the function $z \mapsto z /(1+z)$ is illustrated by means of showing the domain on the left and the target on the right. The fixed point is 0 .

Figure 2: On the left, the map $z \mapsto 2 z$ with fixed points ∞ and 0 is illustrated. On the right, the function $z \mapsto 1 / z$ is illustrated by means of showing the domain on the left and the target on the right. The fixed points are $1,-1$.

Exercise 2

(a) Show that the group of Möbius transformations Möb acts transitively on $\hat{\mathbb{C}}$, i.e. for any $x, y \in \widehat{\mathbb{C}}$ there is a $g \in$ Möb such that $g(x)=y$.
(b) Determine all the combinations of coefficients a, b, c, d such that the corresponding Möbiustransformation is the identity.
(c) Find all orientation-preserving Mobius transformations $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ that send

$$
\infty \mapsto i \mapsto 0 \mapsto-i \mapsto \infty .
$$

(d) What are the possible values for $f(1)$ under a Mobius transformation as in (c)?

Solution:

(a) We first show that there is a Möbius transformation sending $0 \in \hat{\mathbb{C}}$ to any point $p \in \widehat{\mathbb{C}}$. If $p \in \mathbb{C}$, then we take the Möbiustransformation

$$
z \mapsto \frac{1 z+p}{0 z+1},
$$

if $p=\infty$ we can take

$$
z \mapsto \frac{0 z+1}{1 z+0} .
$$

If we now want to send p to q, we first take the inverse of the matrix above to send p to 0 and we then use a matrix as above again to take 0 to q. Since groups of maps on sets always act on the sets, we can compose these two group elements to get one that sends p to q.
(b) We have

$$
z=\frac{a z+b}{c z+d}
$$

for all $z \in \widehat{\mathbb{C}}$ and plug in a few points:
For $z=0$, we obtain $b=0$. For $z=\infty$ we obtain $a / c=\infty$, i.e. $c=0$. Using these two facts we get that $z=a z / d$, hence we also need $a / d=1$. In fact all Möbius transformations with $a, b=0, c=0, d$ that satisfy $a=d \neq 0$ fix all points of $\widehat{\mathbb{C}}$ (the condition $a d-b c \neq 0$ is satisfied automatically).
It may be a good exercise to try to translate everything in terms of matrices.
(c) Let $a, b, c, d \in \mathbb{C}$ such that

$$
f: z \mapsto \frac{a z+b}{c z+d}
$$

is a orientation-preserving Möbiustransformation that sends $\infty \mapsto$ $i \mapsto 0 \mapsto-i \mapsto \infty$. We plug in ∞ to get $a / c=i$. We plug in i to get $a i+b=0$. We plug in 0 to get $b / d=-i$ and finally we plug in $-i$ to get $d=i c$. From the first and fourth result we get $a=d$. From $a=c i$ and $b=-a i$ we get $b=c$. Therefore f must be of the form

$$
z \mapsto \frac{a z-a i}{-a i z+a}
$$

We have $a d-b c=a^{2}-(-a i)^{2}=2 a^{2}$, hence this is a Möbius transformation for all $a \neq 0$. For any $a \neq 0$ this function sends $\infty \mapsto i \mapsto 0 \mapsto-i \mapsto \infty$.
(d) We plug in

$$
f(1)=\frac{a 1-a i}{-a i 1+a}=1 .
$$

This means that any Möbiustransformation that sends $\infty \mapsto i \mapsto 0 \mapsto$ $-i \mapsto \infty$ fixes the point 1 .

Exercise 3

Answer the questions (a) - (e) for the functions (1) - (7). All functions are continuous functions of the Riemann-sphere $\widehat{\mathbb{C}}$. For (1) - (5) we have $f(\infty)=\infty$.
(a) Find the fixed point set $\left\{z \in \hat{\mathbb{C}}: f_{i}(z)=z\right\}$.
(b) Does f_{i} preserve the unit disk?
(c) Is f_{i} an affine map, when restricted to $\mathbb{C} \cong \mathbb{R}^{2}$?
(d) Is f_{i} a similarity, when restricted to \mathbb{C} ?
(e) If f_{i} orientation-preserving or orientation-reversing?
(1) $f_{1}: z \mapsto z+a$, where $a \in \mathbb{C}$ fixed.
(2) $f_{2}: z \mapsto r z$, where $r>0$ fixed.
(3) $f_{3}: z \mapsto e^{i \varphi} z$, where $\varphi \in[0,2 \pi)$ fixed.
(4) $f_{4}: z \mapsto \bar{z}$.
(5) $f_{5}: z \mapsto z^{2}$.
(6) $f_{6}: z \mapsto \frac{z}{|z|^{2}}$, where $f(\infty)=0$ and $f(0)=\infty$.
(7) $f_{7}: z \mapsto \frac{1}{z}$, where $f(\infty)=0$ and $f(0)=\infty$.

Solution:

Let $F(f)$ be the fixed point set. We use the the notation $z=r \cdot e^{i \varphi}=x+i y$ for the complex numbers.
(1) $F\left(f_{1}\right)=\{\infty\}$, or $F\left(f_{1}\right)=\hat{\mathbb{C}}$, when $a=0$. The unit disk is not preserved, except when $a=0$. Yes, $f_{1}(z)=\operatorname{Id} z+a$ and hence is a affine map. Translations are isometries, hence similarities. Yes, translations are orientation-preserving.
(2) $F\left(f_{2}\right)=\{0, \infty\}$, or $F\left(f_{2}\right)=\hat{\mathbb{C}}$, when $r=1$. The unit disk is not preserved, except when $r=1$. Yes, $f_{2}(z)=\operatorname{Diag}(r, r) z+0$ is an affine map. Yes, scalings are similarities and yes, scalings preserve orientation.
(3) This is a rotation around 0 by the angle φ. We have $F\left(f_{3}\right)=\{0, \infty\}$, or $F\left(f_{3}\right)=\hat{\mathbb{C}}$, when $\varphi=0$. The unit disk is preserved. Yes, it is an affine map:

$$
f_{3}(z)=\left(\begin{array}{cc}
\cos (\varphi) & -\sin (\varphi) \\
\sin (\varphi) & \cos (\varphi)
\end{array}\right) z+0 .
$$

Yes, rotations are isometries, hence similarities and yes, rotations preserve orientation.
(4) This is a reflection along the real axis. We have $F\left(f_{4}\right)=\{z \in$ $\mathbb{C}: \operatorname{Im}(z)=0\} \cup\{\infty\}$, the real axis. The unit disk is preserved. It is an affine transformation:

$$
f_{3}(z)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) z+0
$$

Yes, reflections are isometries, hence similarities. Reflections are orientation-reversing.
(5) We calculate $f_{5}\left(r e^{i \varphi}\right)=r^{2} e^{i 2 \varphi}$. For z to be a fixed point, we need $r=1,0$ or ∞ and $\varphi=2 \varphi$. These two conditions are satisfied for $F\left(f_{5}\right)=\{0,1, \infty\}$. Yes, the unit disk is preserved, but is sent to itself twice.
No, this function cannot be represented as an affine map. As $f_{5}(0)=0$, it would need to be a linear map, if it was affine. Linear maps are determined by the image of a base such as $\{1, i\}$, so since $f_{5}(1)=1$ and $f_{5}(i)=-1$, linearity would then give that $f_{5}(1+i)=0$, but this is not so
The function is not a similarity, this can be seen for $r>0$, as $d(0, r)=$ $r \cdot d(f(0), f(r))$, hence there is no constant scaling factor.
The map is orientation preserving everywhere except at 0 and ∞, where it is not smooth.
(6) This is the inversion on the circle. We have $f_{6}(z)=z$ if and only if $|z|^{2}=1$, so $|z|=1$, so $F\left(f_{6}\right)=\{z \in \mathbb{C}:|z|=1\}$ is the unit circle. The interior of the unit circle is sent to the exterior, hence the unit disk is not preserved.
The map is not an affine map or a similarity (its restriction on \mathbb{C} is not even well defined). The map f_{6} is orientation-reversing, as it is a reflection along a circle.
(7) This function is similar to (6). We can describe it as an inversion on the circle followed by a reflection $z \mapsto \bar{z}: f_{7}=f_{4} \circ f_{6}$. We see that $f_{7}(z)=z$ if and only if $z^{2}=1$. This holds for $z=1$ and $z=-1$. Therefore $F\left(f_{7}\right)=\{-1,1\}$. Similar to f_{6}, the unit circle is preserved, but not the unit disk. f_{7} cannot be an affine map nor a similarity. As f_{7} is the composition of two orientation-reversing maps, it is orientation preserving.

