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Solution 4

Exercise 1

For the following exercises, first reason geometrically and then find an algebraic
description.

Let p € C. Describe the point-reflection @ : Cc—¢C.
Show that Qf, =id.

)
)

(c) For p,q € C, what is Qp 0 Q47

(d) Let L C C be a line. Describe the reflection Ry, : C — C along L.
)

Show that for every line L through 0, Ry can be written as z + e!z for
some ¢ € R.

(f) What is the line along which z — €z reflects?

(g) Write Q, and Rj, as Mobius transformations.

Solution:

(a) Geometrically, the point reflection of z on the point p is defined by
drawing a line through 2z and p, and then taking the unique other
point 2’ on that line that satisfies d(p, z) = d(p,z’). One can obtain
this, by considering the vector pz. Then z = p+pz and Q,(2) = p—p2.
Additionally, co should be sent to oc.

Algebraically, @, can be written as

—

Qp(z) =p—pt=p—(2—p)=2p—2
(b) Geometrically, this is clear. Algebraically we have
Qp(Qp(2)) =2p —Qp(2) =2p— (2p— 2) = =.

(c) Geometrically, we can draw a line from p to ¢. Since both @, and @,
send points on one side of the line to points on the other side, the
composition @, o Q4 preserves the sides of the line. Additionally both
@, and @, preserve the distance of points to the line. So it is now only
important to know how points on the line are affected by Q, o Q, as
all other points behave the same, just in parallel. For points z on the
line, we notice that @, 0Q,(2) is translated by 2¢p. So QpoQq = Tagp-

Algebraically this is easier to calculate:

QpoQqy(2) =Qp(2¢g—2)=2p—(2¢—2) =2+4+2(p—q) = 2+ 2gD.
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(d)

Geometrically, to reflect a point z along a line L, one has to find a
line L, perpendicular to L that contains z. Then Rp(z) is the other
unique point on L, which has the same distance from the intersection
point L N L, as z. As before, co — 0.

Algebraically, if the line L is given by the equation ax + by + ¢ = 0 for
some parameters a, b, ¢, then the normal vector is ¥ = (a,b) . Thus for
z = z1 + iz the line L, is parametrized by z 4 tv. The intersection
point of the two lines satisfies the equation

a(z1 +ta) + b(za +ta) + ¢ =0,

which is satisfied for

z1a + z9b + ¢

t =
L a2 + b2

As the distance from z to the Ry (z) is twice as large as the distance
from z to the intersection point, we have

o zia + Zgb +c .
RL(Z) =z 4+ 2t1’U =z — 2w(a + Zb)
We first note that z — z is the reflection on the real axis.

Given a line L that goes through 0, i.e. ¢ = 0, and we may assume
without loss of generality that a® 4+ b? = 1. We have

Rr(z) = 21 — 2a(z1a + 22b) + i (22 — 2b(z1a + 22D))
= 21(1 — 2a%) — 22(2ab) + i (22(1 — 2b%) — 21(2ab))

= (1 —2a* — 2iab)(z; —iz) = €¥Z

where we used a2 + b = 1 to see that 1 — 2a? = 2b? — 1. Finally this
number 1 — 2a? — 2iab is just a complex number and hence can be
written as e (where tan(p) = 1 — 2a? — 2iab).

We want to find out which points are fixed by z — €¥z. We have

21 +izg = 2 = €7 = (cos(ip) + isin()) (21 — i22)

= 21 co8(¢p) + 22 sin(yp) + i(z1 sin(p) — 22 cos(p))
Comparing the real parts z; = 21 cos(p) + 22 sin(y), we get

23 1—cos(p)

2z sin(p)
(assuming sin(¢) # 0), which is the slope of the line

11— cos(g@)gc
YT Tsin(y)

along which z — e?*Z reflects.
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If sin(p) = 0, then cos(p) € {£1}. If cos(yp) = —1, we obtain from

comparing the real parts that z; = —z1, i.e. z; = 0, so the line is the
vertical line. If cos(y) = 1, then looking at the real part does not help,
but comparing the imaginary part we obtain zo = —z5, hence 2o = 0,

so in this case the line is the real axis.
(g) For the point reflection we get directly

_ —lz+2p  —2+42p

@pl2) = 0z+1

For the line reflection, we would like to use z — e’#Z, but need to take
into account that lines may not pass through 0. If L is a line defined
by ax 4+ by + ¢ = 0, then Ly defined by az + by = 0 is the parallel
line through 0. For Ly we know by (e) that there is a ¢ > 0 such that
Rp,(2) = €'¥z. We also know from (d) that

Ri(s) = =~ 2" I oy
S 2%@4—%) - 2Tfrb2(a+ib)
= Ry, (2) — 2(127;)2(“ + ib)
- zribz(a + ib)
| eert (—QCS;T;’;?)
B 0z+1

which writes Ry, as an orientation-reversing Mobius transformation.

Exercise 2

Let b € C and A > 0. Let T}, be the translation by b and let M) be the multipli-
cation by A.

(a) Describe the effect of T}, o M) o T_; geometrically.
(b) Describe the effect of My o T, o My-1 geometrically.

(c) Express the transformations in (a) and (b) as Mobius transformations.

Solution:

(a) While M) is a dilation by a factor A centered at 0, Ty o My o T,
is a dilation by a factor A centered at b. The conjugation by T} just
changes the center of the dilation but does not change the type of
transformation, (note T_j = (T3)71).
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Symbolically, one can define f: C — C to be a dilation by a factor A
centered at p if for all ¢ € C: d(f(p), f(q)) = Ad(p,q) and f preserves
lines trough p. It is clear that M) is a dilation. We claim that f =
Ty, o My oT_; is a dilation by a factor A centered at b. We first note
that f(b) = b.

Lines through b are preserved under f, since for all t € R and v € C,
fb+tv) =b+ A((b+tv) —b) = b+ (At)v
describes the same line.

(b) While T}, is a translation by the element b € C, My o T, o M-1 is
also a translation, but by the element \b. The conjugation by M), just
changes by how much the translation acts, but it does not change the
type of transformation, (note My—1 = (M,)™1).

Symbolically, we have

MyoTyoMy-1(z) =Ab+ /\712) = Ab+ 2z = Thw(2).

(c) We have

Az+ (1 —=A)b
TyoMyoT _(2) = %

z+ Ab
0z+1

MyoTyoMy-—1 =Ty, =

Exercise 3

Given a group of matrices G C M™*"(C), let Zg = {g € G: Vh € G: gh = hg}
be the center. Then PG is defined to be the group G /Zg. Recall that for any
field F and any n > 1,
GL(n,F) ={g € M™*™(F): det(g)
SL(n, F)={g € M™"™(F): det(g) =

RN

0}

1}.

(a) Show that PGL(2,R) 2 PSL(2, R).

(b) Show that PGL(3,R) = PSL(3, R).

(c) What about PGL(n,R) and PSL(n,R) for n > 47
)

(d) Show that PGL(n,C) = PSL(n,C) for all n > 2.
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Solution:

We need to calculate Zgy,(,,r) and Zgy,nr) for F = R and F = C. We know
that the matrix A1d,, for A € F commutes with every other matrix of the
same size. We claim that Ay = AId,, are the only matrices that commute
with every other matrix B. Let A € Zg. For i # j, let B;; be the matrix
that has ones on the diagonal and a 1 in the entry (7, j) and 0 everywhere
else (note that B;; is contained in all the groups that we consider). We
consider B;;A = AB;;, and in particular we consider the entry (4, j):

(BigA)ij = Y binary = bisaij + bijag; = ayj + aj;
k

(ABij)i; = Zaikbkj = a;b55 + aibiy; = ai; + ay
k

which implies that a;; = aj;.

Next we consider the diagonal matrices B = Diag(e?",e?"2,... ¢
(if n even) or B = Diag(e? 1,271 ... e72~1) (if n odd). Note that B
is contained in all the groups we consider. We consider again the entry (i, 7)
(for ¢ # j) of the matrix BA = AB to get

—Qn)

P

(AB)ij =Y ambyj = aijby;
K

(BA)ij =Y birax; = biiaij,
k

which are equal only if a;; = 0.
The two considerations above show that any A € Zg has to be of the
form AId,, for A € F. Hence
Zc={AeG: A=)Id, for N e F}
(a) We have

Zarer) = {Ada: A € R\{0}}
Zsner) = {AIda: A=1or A = —1}

We consider the map ¢ defined by first taking the inclusion and then
the projection.

SL(2,R) —— GL(2,R) — PGL(2,R)

\_/

©
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We first show Ker(p) = Zgr,2,r): Let g € SL(2,R) such that ¢(g) =
[Id2]. This means that g € Zar2,r), i-e. g = Alda. Since g € SL(2,R),
A€ {£1}, ie. g € Zsp2,r)- On the other hand, if g € Zgp,(2,r), then
g = Aldy with A € {1} and thus g € Zgp,(2,r), hence g € ker(p). By
the isomorphism theorem we have

PSL(2,R) = SL(2, R)/ ker(¢) = im(y) C PGL(2,R).

To show that PSL(2,R) # PGL(2,R), we thus just have to show that
@ is not surjective: Consider the matrix

A= ((1) _01) € GL(2,R) \ SL(2,R)

For any AIda € Zar(2,r), We have
det(AMNIdy) = det(A) det(AIdy) = —1A2

which is always negative, hence AXIds is never in SL(2,R), hence
there is no preimage of [A] in SL(2,R) and PGL(2,R) 2 PSL(2,R).

We argue as in (a), it follows analogously that ker(y) = Zg,3 r). We
again use the isomorphism theorem

PSL(3,R) = SL(3,R)/ ker(¢) = im(¢) C PGL(3,R).

and this time show that ¢ is surjective. Given any g € GL(3,R),
consider the third root Az := (det(g))*/? of det(g). We can define
A;'g € GL(3,R). We have

det(A3'g) = (A3 1)? det(g) =1,

hence A\;'g € SL(3,R). We have p(A\;'g) = [g] and hence ¢ is surjec-
tive, and hence
PSL(3,R) = PGL(3, R).

For general n, we still have a function ¢: SL(n,R) — PGL(n,R)
and we still have that ker(p) = Zsp(nr). For ¢ € GL(n,R) we
can find a preimage as in (b) exactly when n is odd, since all real
numbers then have an n-th root. When n is even, the projection of
g = Diag(—1,1,...,1) does not have a preimage, as there is no even
power of a real number that is —1. We thus have

= PGL(n,R) if nis odd
PSL(n, R) {aé PGL(n,R) if n is even.
Also for C, one can define ¢: SL(n,C) — PGL(n,C) and calculate
its kernel ker(p) = Zspn,c). Since C is algebraically closed, every
number has an n-th root for every n. Thus the trick in (b) works for
all matrices and ¢ is always surjective, showing the result.




