Solution 4

Exercise 1

For the following exercises, first reason geometrically and then find an algebraic description.
(a) Let $p \in \mathbb{C}$. Describe the point-reflection $Q_{p}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$.
(b) Show that $Q_{p}^{2}=\mathrm{id}$.
(c) For $p, q \in \mathbb{C}$, what is $Q_{p} \circ Q_{q}$?
(d) Let $L \subseteq \mathbb{C}$ be a line. Describe the reflection $R_{L}: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ along L.
(e) Show that for every line L through $0, R_{L}$ can be written as $z \mapsto e^{i \varphi} \bar{z}$ for some $\varphi \in \mathbb{R}$.
(f) What is the line along which $z \mapsto e^{i \varphi} \bar{z}$ reflects?
(g) Write Q_{p} and R_{L} as Möbius transformations.

Solution:

(a) Geometrically, the point reflection of z on the point p is defined by drawing a line through z and p, and then taking the unique other point z^{\prime} on that line that satisfies $d(p, z)=d\left(p, z^{\prime}\right)$. One can obtain this, by considering the vector $\overrightarrow{p z}$. Then $z=p+\overrightarrow{p z}$ and $Q_{p}(z)=p-\overrightarrow{p z}$.
Additionally, ∞ should be sent to ∞.
Algebraically, Q_{p} can be written as

$$
Q_{p}(z)=p-\overrightarrow{p z}=p-(z-p)=2 p-z .
$$

(b) Geometrically, this is clear. Algebraically we have

$$
Q_{p}\left(Q_{p}(z)\right)=2 p-Q_{p}(z)=2 p-(2 p-z)=z
$$

(c) Geometrically, we can draw a line from p to q. Since both Q_{p} and Q_{q} send points on one side of the line to points on the other side, the composition $Q_{p} \circ Q_{q}$ preserves the sides of the line. Additionally both Q_{p} and Q_{q} preserve the distance of points to the line. So it is now only important to know how points on the line are affected by $Q_{p} \circ Q_{q}$, as all other points behave the same, just in parallel. For points z on the line, we notice that $Q_{p} \circ Q_{q}(z)$ is translated by $2 \overrightarrow{q p}$. So $Q_{p} \circ Q_{q}=T_{2 \vec{p} p}$. Algebraically this is easier to calculate:

$$
Q_{p} \circ Q_{q}(z)=Q_{p}(2 q-z)=2 p-(2 q-z)=z+2(p-q)=z+2 \overrightarrow{q p}
$$

(d) Geometrically, to reflect a point z along a line L, one has to find a line L_{z} perpendicular to L that contains z. Then $R_{L}(z)$ is the other unique point on L_{z} which has the same distance from the intersection point $L \cap L_{z}$ as z. As before, $\infty \mapsto \infty$.
Algebraically, if the line L is given by the equation $a x+b y+c=0$ for some parameters a, b, c, then the normal vector is $\vec{v}=(a, b)$. Thus for $z=z_{1}+i z_{2}$ the line L_{z} is parametrized by $z+t \vec{v}$. The intersection point of the two lines satisfies the equation

$$
a\left(z_{1}+t a\right)+b\left(z_{2}+t a\right)+c=0
$$

which is satisfied for

$$
t_{1}=-\frac{z_{1} a+z_{2} b+c}{a^{2}+b^{2}} .
$$

As the distance from z to the $R_{L}(z)$ is twice as large as the distance from z to the intersection point, we have

$$
R_{L}(z)=z+2 t_{1} \vec{v}=z-2 \frac{z_{1} a+z_{2} b+c}{a^{2}+b^{2}}(a+i b)
$$

(e) We first note that $z \mapsto \bar{z}$ is the reflection on the real axis.

Given a line L that goes through 0 , i.e. $c=0$, and we may assume without loss of generality that $a^{2}+b^{2}=1$. We have

$$
\begin{aligned}
R_{L}(z) & =z_{1}-2 a\left(z_{1} a+z_{2} b\right)+i\left(z_{2}-2 b\left(z_{1} a+z_{2} b\right)\right) \\
& =z_{1}\left(1-2 a^{2}\right)-z_{2}(2 a b)+i\left(z_{2}\left(1-2 b^{2}\right)-z_{1}(2 a b)\right) \\
& =\left(1-2 a^{2}-2 i a b\right)\left(z_{1}-i z_{2}\right)=e^{\varphi} \bar{z}
\end{aligned}
$$

where we used $a^{2}+b^{2}=1$ to see that $1-2 a^{2}=2 b^{2}-1$. Finally this number $1-2 a^{2}-2 i a b$ is just a complex number and hence can be written as $e^{i \varphi}\left(\right.$ where $\left.\tan (\varphi)=1-2 a^{2}-2 i a b\right)$.
(f) We want to find out which points are fixed by $z \mapsto e^{i \varphi} \bar{z}$. We have

$$
\begin{aligned}
z_{1}+i z_{2}=z & =e^{i \varphi} \bar{z}=(\cos (\varphi)+i \sin (\varphi))\left(z_{1}-i z_{2}\right) \\
& =z_{1} \cos (\varphi)+z_{2} \sin (\varphi)+i\left(z_{1} \sin (\varphi)-z_{2} \cos (\varphi)\right)
\end{aligned}
$$

Comparing the real parts $z_{1}=z_{1} \cos (\varphi)+z_{2} \sin (\varphi)$, we get

$$
\frac{z_{2}}{z_{1}}=\frac{1-\cos (\varphi)}{\sin (\varphi)}
$$

(assuming $\sin (\varphi) \neq 0$), which is the slope of the line

$$
y=\frac{1-\cos (\varphi)}{\sin (\varphi)} x
$$

along which $z \mapsto e^{i \varphi} \bar{z}$ reflects.

If $\sin (\varphi)=0$, then $\cos (\varphi) \in\{ \pm 1\}$. If $\cos (\varphi)=-1$, we obtain from comparing the real parts that $z_{1}=-z_{1}$, i.e. $z_{1}=0$, so the line is the vertical line. If $\cos (\varphi)=1$, then looking at the real part does not help, but comparing the imaginary part we obtain $z_{2}=-z_{2}$, hence $z_{2}=0$, so in this case the line is the real axis.
(g) For the point reflection we get directly

$$
Q_{p}(z)=\frac{-1 z+2 p}{0 z+1}=\frac{-z+2 p}{.}
$$

For the line reflection, we would like to use $z \mapsto e^{i \varphi} \bar{z}$, but need to take into account that lines may not pass through 0 . If L is a line defined by $a x+b y+c=0$, then L_{0} defined by $a x+b y=0$ is the parallel line through 0 . For L_{0} we know by (e) that there is a $\varphi>0$ such that $R_{L_{0}}(z)=e^{i \varphi} \bar{z}$. We also know from (d) that

$$
\begin{aligned}
R_{L}(z) & =z-2 \frac{a z_{1}+b z_{2}+c}{a^{2}+b^{2}}(a+i b) \\
& =z-2 \frac{a z_{1}+b z_{2}}{a^{2}+b^{2}}(a+i b)-2 \frac{c}{a^{2}+b^{2}}(a+i b) \\
& =R_{L_{0}}(z)-2 \frac{c}{a^{2}+b^{2}}(a+i b) \\
& =e^{i \varphi} \bar{z}-2 \frac{c}{a^{2}+b^{2}}(a+i b) \\
& =\frac{e^{i \varphi} \bar{z}+\left(-2 c \frac{(a+i b)}{a^{2}+b^{2}}\right)}{0 \bar{z}+1}
\end{aligned}
$$

which writes R_{L} as an orientation-reversing Möbius transformation.

Exercise 2

Let $b \in \mathbb{C}$ and $\lambda>0$. Let T_{b} be the translation by b and let M_{λ} be the multiplication by λ.
(a) Describe the effect of $T_{b} \circ M_{\lambda} \circ T_{-b}$ geometrically.
(b) Describe the effect of $M_{\lambda} \circ T_{b} \circ M_{\lambda^{-1}}$ geometrically.
(c) Express the transformations in (a) and (b) as Möbius transformations.

Solution:

(a) While M_{λ} is a dilation by a factor λ centered at $0, T_{b} \circ M_{\lambda} \circ T_{-b}$ is a dilation by a factor λ centered at b. The conjugation by T_{b} just changes the center of the dilation but does not change the type of transformation, (note $\left.T_{-b}=\left(T_{b}\right)^{-1}\right)$.

Symbolically, one can define $f: \mathbb{C} \rightarrow \mathbb{C}$ to be a dilation by a factor λ centered at p if for all $q \in \mathbb{C}: d(f(p), f(q))=\lambda d(p, q)$ and f preserves lines trough p. It is clear that M_{λ} is a dilation. We claim that $f=$ $T_{b} \circ M_{\lambda} \circ T_{-b}$ is a dilation by a factor λ centered at b. We first note that $f(b)=b$.

$$
\begin{aligned}
f(q) & =b+\lambda(q-b) \\
d(f(b), f(q)) & =|f(q)-f(b)|=|b+\lambda(q-b)-b|=\lambda|q-b|=\lambda d(b, q) .
\end{aligned}
$$

Lines through b are preserved under f, since for all $t \in \mathbb{R}$ and $v \in \mathbb{C}$,

$$
f(b+t v)=b+\lambda((b+t v)-b)=b+(\lambda t) v
$$

describes the same line.
(b) While T_{b} is a translation by the element $b \in \mathbb{C}, M_{\lambda} \circ T_{b} \circ M_{\lambda^{-1}}$ is also a translation, but by the element λb. The conjugation by M_{λ} just changes by how much the translation acts, but it does not change the type of transformation, (note $M_{\lambda^{-1}}=\left(M_{\lambda}\right)^{-1}$).
Symbolically, we have

$$
M_{\lambda} \circ T_{b} \circ M_{\lambda^{-1}}(z)=\lambda\left(b+\lambda^{-1} z\right)=\lambda b+z=T_{\lambda b}(z)
$$

(c) We have

$$
\begin{aligned}
T_{b} \circ M_{\lambda} \circ T_{-b}(z) & =\frac{\lambda z+(1-\lambda) b}{0 z+1} \\
M_{\lambda} \circ T_{b} \circ M_{\lambda-1} & =T_{\lambda b}=\frac{z+\lambda b}{0 z+1}
\end{aligned}
$$

Exercise 3

Given a group of matrices $\mathrm{G} \subseteq M^{n \times n}(\mathbb{C})$, let $Z_{\mathrm{G}}=\{g \in G: \forall h \in G: g h=h g\}$ be the center. Then PG is defined to be the group $\mathrm{G} / Z_{\mathrm{G}}$. Recall that for any field F and any $n \geq 1$,

$$
\begin{aligned}
\operatorname{GL}(n, F) & =\left\{g \in M^{n \times n}(F): \operatorname{det}(g) \neq 0\right\} \\
\mathrm{SL}(n, F) & =\left\{g \in M^{n \times n}(F): \operatorname{det}(g)=1\right\} .
\end{aligned}
$$

(a) Show that $\operatorname{PGL}(2, \mathbb{R}) \not \not \approx \operatorname{PSL}(2, \mathbb{R})$.
(b) Show that $\operatorname{PGL}(3, \mathbb{R}) \cong \operatorname{PSL}(3, \mathbb{R})$.
(c) What about $\operatorname{PGL}(n, \mathbb{R})$ and $\operatorname{PSL}(n, \mathbb{R})$ for $n \geq 4$?
(d) Show that $\operatorname{PGL}(n, \mathbb{C}) \cong \operatorname{PSL}(n, \mathbb{C})$ for all $n \geq 2$.

Solution:

We need to calculate $Z_{\mathrm{GL}(n, \mathbb{F})}$ and $Z_{\mathrm{SL}(n, \mathbb{F})}$ for $\mathbb{F}=\mathbb{R}$ and $\mathbb{F}=\mathbb{C}$. We know that the matrix $\lambda \mathrm{Id}_{n}$ for $\lambda \in \mathbb{F}$ commutes with every other matrix of the same size. We claim that $A_{\lambda}=\lambda \mathrm{Id}_{n}$ are the only matrices that commute with every other matrix B. Let $A \in Z_{\mathrm{G}}$. For $i \neq j$, let $B_{i j}$ be the matrix that has ones on the diagonal and a 1 in the entry (i, j) and 0 everywhere else (note that $B_{i j}$ is contained in all the groups that we consider). We consider $B_{i j} A=A B_{i j}$, and in particular we consider the entry (i, j) :

$$
\begin{aligned}
& \left(B_{i j} A\right)_{i j}=\sum_{k} b_{i k} a_{k j}=b_{i i} a_{i j}+b_{i j} a_{j j}=a_{i j}+a_{j j} \\
& \left(A B_{i j}\right)_{i j}=\sum_{k} a_{i k} b_{k j}=a_{i j} b_{j j}+a_{i i} b_{i j}=a_{i j}+a_{i i}
\end{aligned}
$$

which implies that $a_{i i}=a_{j j}$.
Next we consider the diagonal matrices $B=\operatorname{Diag}\left(e^{2 n}, e^{2 n-2}, \ldots, e^{-2 n}\right)$ (if n even) or $B=\operatorname{Diag}\left(e^{2 n+1}, e^{2 n-1}, \ldots, e^{-2 n-1}\right)$, (if n odd). Note that B is contained in all the groups we consider. We consider again the entry (i, j) (for $i \neq j$) of the matrix $B A=A B$ to get

$$
\begin{aligned}
& (A B)_{i j}=\sum_{k} a_{i k} b_{k j}=a_{i j} b_{j j} \\
& (B A)_{i j}=\sum_{k} b_{i k} a_{k j}=b_{i i} a_{i j}
\end{aligned}
$$

which are equal only if $a_{i j}=0$.
The two considerations above show that any $A \in Z_{\mathrm{G}}$ has to be of the form $\lambda \operatorname{Id}_{n}$ for $\lambda \in \mathbb{F}$. Hence

$$
Z_{\mathrm{G}}=\left\{A \in \mathrm{G}: A=\lambda \operatorname{Id}_{n} \text { for } \lambda \in \mathbb{F}\right\}
$$

(a) We have

$$
\begin{aligned}
Z_{\mathrm{GL}(2, \mathbb{R})} & =\left\{\lambda \mathrm{Id}_{2}: \lambda \in \mathbb{R} \backslash\{0\}\right\} \\
Z_{\mathrm{SL}(2, \mathbb{R})} & =\left\{\lambda \mathrm{Id}_{2}: \lambda=1 \text { or } \lambda=-1\right\}
\end{aligned}
$$

We consider the map φ defined by first taking the inclusion and then the projection.

We first show $\operatorname{Ker}(\varphi)=Z_{\mathrm{SL}(2, \mathbb{R})}$: Let $g \in \operatorname{SL}(2, \mathbb{R})$ such that $\varphi(g)=$ $\left[\mathrm{Id}_{2}\right]$. This means that $g \in Z_{\mathrm{GL}(2, \mathbb{R})}$, i.e. $g=\lambda \mathrm{Id}_{2}$. Since $g \in \operatorname{SL}(2, \mathbb{R})$, $\lambda \in\{ \pm 1\}$, i.e. $g \in Z_{\mathrm{SL}(2, \mathbb{R})}$. On the other hand, if $g \in Z_{\mathrm{SL}(2, \mathbb{R})}$, then $g=\lambda \mathrm{Id}_{2}$ with $\lambda \in\{ \pm 1\}$ and thus $g \in Z_{\mathrm{GL}(2, \mathbb{R})}$, hence $g \in \operatorname{ker}(\varphi)$. By the isomorphism theorem we have

$$
\operatorname{PSL}(2, \mathbb{R})=\operatorname{SL}(2, \mathbb{R}) / \operatorname{ker}(\varphi) \cong \operatorname{im}(\varphi) \subseteq \operatorname{PGL}(2, \mathbb{R})
$$

To show that $\operatorname{PSL}(2, \mathbb{R}) \neq \operatorname{PGL}(2, \mathbb{R})$, we thus just have to show that φ is not surjective: Consider the matrix

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \in \mathrm{GL}(2, \mathbb{R}) \backslash \mathrm{SL}(2, \mathbb{R})
$$

For any $\lambda \mathrm{Id}_{2} \in Z_{\mathrm{GL}(2, \mathbb{R})}$, we have

$$
\operatorname{det}\left(A \lambda \operatorname{Id}_{2}\right)=\operatorname{det}(A) \operatorname{det}\left(\lambda \operatorname{Id}_{2}\right)=-1 \lambda^{2}
$$

which is always negative, hence $A \lambda \mathrm{Id}_{2}$ is never in $\operatorname{SL}(2, \mathbb{R})$, hence there is no preimage of $[A]$ in $\operatorname{SL}(2, \mathbb{R})$ and $\operatorname{PGL}(2, \mathbb{R}) \not \not 二 \operatorname{PSL}(2, \mathbb{R})$.
(b) We argue as in (a), it follows analogously that $\operatorname{ker}(\varphi)=Z_{\mathrm{SL}(3, \mathbb{R})}$. We again use the isomorphism theorem

$$
\operatorname{PSL}(3, \mathbb{R})=\operatorname{SL}(3, \mathbb{R}) / \operatorname{ker}(\varphi) \cong \operatorname{im}(\varphi) \subseteq \operatorname{PGL}(3, \mathbb{R})
$$

and this time show that φ is surjective. Given any $g \in \operatorname{GL}(3, \mathbb{R})$, consider the third root $\lambda_{3}:=(\operatorname{det}(g))^{1 / 3}$ of $\operatorname{det}(g)$. We can define $\lambda_{3}^{-1} g \in \mathrm{GL}(3, \mathbb{R})$. We have

$$
\operatorname{det}\left(\lambda_{3}^{-1} g\right)=\left(\lambda_{3}^{-1}\right)^{3} \operatorname{det}(g)=1
$$

hence $\lambda_{3}^{-1} g \in \operatorname{SL}(3, \mathbb{R})$. We have $\varphi\left(\lambda_{3}^{-1} g\right)=[g]$ and hence φ is surjective, and hence

$$
\operatorname{PSL}(3, \mathbb{R})=\operatorname{PGL}(3, \mathbb{R})
$$

(3) For general n, we still have a function $\varphi: \operatorname{SL}(n, \mathbb{R}) \rightarrow \operatorname{PGL}(n, \mathbb{R})$ and we still have that $\operatorname{ker}(\varphi)=Z_{\mathrm{SL}(n, \mathbb{R})}$. For $g \in \operatorname{GL}(n, \mathbb{R})$ we can find a preimage as in (b) exactly when n is odd, since all real numbers then have an n-th root. When n is even, the projection of $g=\operatorname{Diag}(-1,1, \ldots, 1)$ does not have a preimage, as there is no even power of a real number that is -1 . We thus have

$$
\operatorname{PSL}(n, \mathbb{R}) \quad \begin{cases}\cong \operatorname{PGL}(n, \mathbb{R}) & \text { if } n \text { is odd } \\ \neq \operatorname{PGL}(n, \mathbb{R}) & \text { if } n \text { is even. }\end{cases}
$$

(c) Also for \mathbb{C}, one can define $\varphi: \operatorname{SL}(n, \mathbb{C}) \rightarrow \operatorname{PGL}(n, \mathbb{C})$ and calculate its kernel $\operatorname{ker}(\varphi)=Z_{\mathrm{SL}(n, \mathbb{C})}$. Since \mathbb{C} is algebraically closed, every number has an n-th root for every n. Thus the trick in (b) works for all matrices and φ is always surjective, showing the result.

