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Solution 4

Exercise 1
For the following exercises, first reason geometrically and then find an algebraic
description.

(a) Let p ∈ C. Describe the point-reflection Qp : Ĉ→ Ĉ.

(b) Show that Q2
p = id.

(c) For p, q ∈ C, what is Qp ◦Qq?

(d) Let L ⊆ C be a line. Describe the reflection RL : Ĉ→ Ĉ along L.

(e) Show that for every line L through 0, RL can be written as z 7→ eiϕz̄ for
some ϕ ∈ R.

(f) What is the line along which z 7→ eiϕz̄ reflects?

(g) Write Qp and RL as Möbius transformations.

Solution:

(a) Geometrically, the point reflection of z on the point p is defined by
drawing a line through z and p, and then taking the unique other
point z′ on that line that satisfies d(p, z) = d(p, z′). One can obtain
this, by considering the vector ~pz. Then z = p+ ~pz and Qp(z) = p− ~pz.
Additionally, ∞ should be sent to ∞.

Algebraically, Qp can be written as

Qp(z) = p− ~pz = p− (z − p) = 2p− z.

(b) Geometrically, this is clear. Algebraically we have

Qp(Qp(z)) = 2p−Qp(z) = 2p− (2p− z) = z.

(c) Geometrically, we can draw a line from p to q. Since both Qp and Qq
send points on one side of the line to points on the other side, the
composition Qp ◦Qq preserves the sides of the line. Additionally both
Qp and Qq preserve the distance of points to the line. So it is now only
important to know how points on the line are affected by Qp ◦Qq, as
all other points behave the same, just in parallel. For points z on the
line, we notice that Qp◦Qq(z) is translated by 2 ~qp. So Qp◦Qq = T2 ~qp.

Algebraically this is easier to calculate:

Qp ◦Qq(z) = Qp(2q − z) = 2p− (2q − z) = z + 2(p− q) = z + 2 ~qp.
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(d) Geometrically, to reflect a point z along a line L, one has to find a
line Lz perpendicular to L that contains z. Then RL(z) is the other
unique point on Lz which has the same distance from the intersection
point L ∩ Lz as z. As before, ∞ 7→ ∞.

Algebraically, if the line L is given by the equation ax+ by+ c = 0 for
some parameters a, b, c, then the normal vector is ~v = (a, b) . Thus for
z = z1 + iz2 the line Lz is parametrized by z + t~v. The intersection
point of the two lines satisfies the equation

a(z1 + ta) + b(z2 + ta) + c = 0,

which is satisfied for

t1 = −z1a+ z2b+ c

a2 + b2
.

As the distance from z to the RL(z) is twice as large as the distance
from z to the intersection point, we have

RL(z) = z + 2t1~v = z − 2
z1a+ z2b+ c

a2 + b2
(a+ ib)

(e) We first note that z 7→ z̄ is the reflection on the real axis.

Given a line L that goes through 0, i.e. c = 0, and we may assume
without loss of generality that a2 + b2 = 1. We have

RL(z) = z1 − 2a(z1a+ z2b) + i (z2 − 2b(z1a+ z2b))

= z1(1− 2a2)− z2(2ab) + i
(
z2(1− 2b2)− z1(2ab)

)
= (1− 2a2 − 2iab)(z1 − iz2) = eϕz̄

where we used a2 + b2 = 1 to see that 1− 2a2 = 2b2 − 1. Finally this
number 1 − 2a2 − 2iab is just a complex number and hence can be
written as eiϕ (where tan(ϕ) = 1− 2a2 − 2iab).

(f) We want to find out which points are fixed by z 7→ eiϕz̄. We have

z1 + iz2 = z = eiϕz̄ = (cos(ϕ) + i sin(ϕ))(z1 − iz2)

= z1 cos(ϕ) + z2 sin(ϕ) + i(z1 sin(ϕ)− z2 cos(ϕ))

Comparing the real parts z1 = z1 cos(ϕ) + z2 sin(ϕ), we get

z2
z1

=
1− cos(ϕ)

sin(ϕ)

(assuming sin(ϕ) 6= 0), which is the slope of the line

y =
1− cos(ϕ)

sin(ϕ)
x

along which z 7→ eiϕz̄ reflects.
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If sin(ϕ) = 0, then cos(ϕ) ∈ {±1}. If cos(ϕ) = −1, we obtain from
comparing the real parts that z1 = −z1, i.e. z1 = 0, so the line is the
vertical line. If cos(ϕ) = 1, then looking at the real part does not help,
but comparing the imaginary part we obtain z2 = −z2, hence z2 = 0,
so in this case the line is the real axis.

(g) For the point reflection we get directly

Qp(z) =
−1z + 2p

0z + 1
=
−z + 2p

.

For the line reflection, we would like to use z 7→ eiϕz̄, but need to take
into account that lines may not pass through 0. If L is a line defined
by ax + by + c = 0, then L0 defined by ax + by = 0 is the parallel
line through 0. For L0 we know by (e) that there is a ϕ > 0 such that
RL0

(z) = eiϕz̄. We also know from (d) that

RL(z) = z − 2
az1 + bz2 + c

a2 + b2
(a+ ib)

= z − 2
az1 + bz2
a2 + b2

(a+ ib)− 2
c

a2 + b2
(a+ ib)

= RL0(z)− 2
c

a2 + b2
(a+ ib)

= eiϕz̄ − 2
c

a2 + b2
(a+ ib)

=
eiϕz̄ +

(
−2c (a+ib)a2+b2

)
0z̄ + 1

which writes RL as an orientation-reversing Möbius transformation.

Exercise 2
Let b ∈ C and λ > 0. Let Tb be the translation by b and let Mλ be the multipli-
cation by λ.

(a) Describe the effect of Tb ◦Mλ ◦ T−b geometrically.

(b) Describe the effect of Mλ ◦ Tb ◦Mλ−1 geometrically.

(c) Express the transformations in (a) and (b) as Möbius transformations.

Solution:

(a) While Mλ is a dilation by a factor λ centered at 0, Tb ◦ Mλ ◦ T−b
is a dilation by a factor λ centered at b. The conjugation by Tb just
changes the center of the dilation but does not change the type of
transformation, (note T−b = (Tb)

−1).

3



ETH Zürich
Prof. Dr. Tom Ilmanen

D-MATH
Raphael Appenzeller

Geometrie
17. Mar. 2023

Symbolically, one can define f : C→ C to be a dilation by a factor λ
centered at p if for all q ∈ C : d(f(p), f(q)) = λd(p, q) and f preserves
lines trough p. It is clear that Mλ is a dilation. We claim that f =
Tb ◦Mλ ◦ T−b is a dilation by a factor λ centered at b. We first note
that f(b) = b.

f(q) = b+ λ(q − b)
d(f(b), f(q)) = |f(q)− f(b)| = |b+ λ(q − b)− b| = λ|q − b| = λd(b, q).

Lines through b are preserved under f , since for all t ∈ R and v ∈ C,

f(b+ tv) = b+ λ((b+ tv)− b) = b+ (λt)v

describes the same line.

(b) While Tb is a translation by the element b ∈ C, Mλ ◦ Tb ◦Mλ−1 is
also a translation, but by the element λb. The conjugation byMλ just
changes by how much the translation acts, but it does not change the
type of transformation, (note Mλ−1 = (Mλ)−1).

Symbolically, we have

Mλ ◦ Tb ◦Mλ−1(z) = λ(b+ λ−1z) = λb+ z = Tλb(z).

(c) We have

Tb ◦Mλ ◦ T−b(z) =
λz + (1− λ)b

0z + 1

Mλ ◦ Tb ◦Mλ−1 = Tλb =
z + λb

0z + 1
.

Exercise 3
Given a group of matrices G ⊆Mn×n(C), let ZG = {g ∈ G : ∀h ∈ G : gh = hg}
be the center. Then PG is defined to be the group G /ZG. Recall that for any
field F and any n ≥ 1,

GL(n, F ) = {g ∈Mn×n(F ) : det(g) 6= 0}
SL(n, F ) = {g ∈Mn×n(F ) : det(g) = 1}.

(a) Show that PGL(2,R) 6∼= PSL(2,R).

(b) Show that PGL(3,R) ∼= PSL(3,R).

(c) What about PGL(n,R) and PSL(n,R) for n ≥ 4?

(d) Show that PGL(n,C) ∼= PSL(n,C) for all n ≥ 2.
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Solution:
We need to calculate ZGL(n,F) and ZSL(n,F) for F = R and F = C. We know
that the matrix λ Idn for λ ∈ F commutes with every other matrix of the
same size. We claim that Aλ = λ Idn are the only matrices that commute
with every other matrix B. Let A ∈ ZG. For i 6= j, let Bij be the matrix
that has ones on the diagonal and a 1 in the entry (i, j) and 0 everywhere
else (note that Bij is contained in all the groups that we consider). We
consider BijA = ABij , and in particular we consider the entry (i, j):

(BijA)ij =
∑
k

bikakj = biiaij + bijajj = aij + ajj

(ABij)ij =
∑
k

aikbkj = aijbjj + aiibij = aij + aii

which implies that aii = ajj .
Next we consider the diagonal matrices B = Diag(e2n, e2n−2, . . . , e−2n)

(if n even) or B = Diag(e2n+1, e2n−1, . . . , e−2n−1), (if n odd). Note that B
is contained in all the groups we consider. We consider again the entry (i, j)
(for i 6= j) of the matrix BA = AB to get

(AB)ij =
∑
k

aikbkj = aijbjj

(BA)ij =
∑
k

bikakj = biiaij ,

which are equal only if aij = 0.
The two considerations above show that any A ∈ ZG has to be of the

form λ Idn for λ ∈ F. Hence

ZG = {A ∈ G: A = λ Idn for λ ∈ F}

(a) We have

ZGL(2,R) = {λ Id2 : λ ∈ R \{0}}
ZSL(2,R) = {λ Id2 : λ = 1 or λ = −1}

We consider the map ϕ defined by first taking the inclusion and then
the projection.

SL(2,R) GL(2,R) PGL(2,R)

ϕ
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We first show Ker(ϕ) = ZSL(2,R): Let g ∈ SL(2,R) such that ϕ(g) =
[Id2]. This means that g ∈ ZGL(2,R), i.e. g = λ Id2. Since g ∈ SL(2,R),
λ ∈ {±1}, i.e. g ∈ ZSL(2,R). On the other hand, if g ∈ ZSL(2,R), then
g = λ Id2 with λ ∈ {±1} and thus g ∈ ZGL(2,R), hence g ∈ ker(ϕ). By
the isomorphism theorem we have

PSL(2,R) = SL(2,R)/ ker(ϕ) ∼= im(ϕ) ⊆ PGL(2,R).

To show that PSL(2,R) 6= PGL(2,R), we thus just have to show that
ϕ is not surjective: Consider the matrix

A =

(
1 0
0 −1

)
∈ GL(2,R) \ SL(2,R)

For any λ Id2 ∈ ZGL(2,R), we have

det(Aλ Id2) = det(A) det(λ Id2) = −1λ2

which is always negative, hence Aλ Id2 is never in SL(2,R), hence
there is no preimage of [A] in SL(2,R) and PGL(2,R) 6∼= PSL(2,R).

(b) We argue as in (a), it follows analogously that ker(ϕ) = ZSL(3,R). We
again use the isomorphism theorem

PSL(3,R) = SL(3,R)/ ker(ϕ) ∼= im(ϕ) ⊆ PGL(3,R).

and this time show that ϕ is surjective. Given any g ∈ GL(3,R),
consider the third root λ3 := (det(g))1/3 of det(g). We can define
λ−13 g ∈ GL(3,R). We have

det(λ−13 g) = (λ−13 )3 det(g) = 1,

hence λ−13 g ∈ SL(3,R). We have ϕ(λ−13 g) = [g] and hence ϕ is surjec-
tive, and hence

PSL(3,R) = PGL(3,R).

(3) For general n, we still have a function ϕ : SL(n,R) → PGL(n,R)
and we still have that ker(ϕ) = ZSL(n,R). For g ∈ GL(n,R) we
can find a preimage as in (b) exactly when n is odd, since all real
numbers then have an n-th root. When n is even, the projection of
g = Diag(−1, 1, . . . , 1) does not have a preimage, as there is no even
power of a real number that is −1. We thus have

PSL(n,R)

{ ∼= PGL(n,R) if n is odd
6∼= PGL(n,R) if n is even.

(c) Also for C, one can define ϕ : SL(n,C) → PGL(n,C) and calculate
its kernel ker(ϕ) = ZSL(n,C). Since C is algebraically closed, every
number has an n-th root for every n. Thus the trick in (b) works for
all matrices and ϕ is always surjective, showing the result.
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