Solution 4

Exercise 1

For the following exercises, first reason geometrically and then find an algebraic description.

- (a) Let $p \in \mathbb{C}$. Describe the point-reflection $Q_p \colon \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.
- (b) Show that $Q_p^2 = \text{id.}$
- (c) For $p, q \in \mathbb{C}$, what is $Q_p \circ Q_q$?
- (d) Let $L \subseteq \mathbb{C}$ be a line. Describe the reflection $R_L : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ along L.
- (e) Show that for every line L through 0, R_L can be written as $z \mapsto e^{i\varphi} \bar{z}$ for some $\varphi \in \mathbb{R}$.
- (f) What is the line along which $z \mapsto e^{i\varphi} \bar{z}$ reflects?
- (g) Write Q_p and R_L as Möbius transformations.

Solution:

(a) Geometrically, the point reflection of z on the point p is defined by drawing a line through z and p, and then taking the unique other point z' on that line that satisfies d(p, z) = d(p, z'). One can obtain this, by considering the vector \vec{pz} . Then $z = p + \vec{pz}$ and $Q_p(z) = p - \vec{pz}$. Additionally, ∞ should be sent to ∞ .

Algebraically, Q_p can be written as

$$Q_p(z) = p - p\vec{z} = p - (z - p) = 2p - z.$$

(b) Geometrically, this is clear. Algebraically we have

$$Q_p(Q_p(z)) = 2p - Q_p(z) = 2p - (2p - z) = z.$$

(c) Geometrically, we can draw a line from p to q. Since both Q_p and Q_q send points on one side of the line to points on the other side, the composition $Q_p \circ Q_q$ preserves the sides of the line. Additionally both Q_p and Q_q preserve the distance of points to the line. So it is now only important to know how points on the line are affected by $Q_p \circ Q_q$, as all other points behave the same, just in parallel. For points z on the line, we notice that $Q_p \circ Q_q(z)$ is translated by $2q\vec{p}$. So $Q_p \circ Q_q = T_{2q\vec{p}}$.

Algebraically this is easier to calculate:

$$Q_p \circ Q_q(z) = Q_p(2q-z) = 2p - (2q-z) = z + 2(p-q) = z + 2q\vec{p}.$$

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	17. Mar. 2023

(d) Geometrically, to reflect a point z along a line L, one has to find a line L_z perpendicular to L that contains z. Then $R_L(z)$ is the other unique point on L_z which has the same distance from the intersection point $L \cap L_z$ as z. As before, $\infty \mapsto \infty$.

Algebraically, if the line L is given by the equation ax + by + c = 0 for some parameters a, b, c, then the normal vector is $\vec{v} = (a, b)$. Thus for $z = z_1 + iz_2$ the line L_z is parametrized by $z + t\vec{v}$. The intersection point of the two lines satisfies the equation

$$a(z_1 + ta) + b(z_2 + ta) + c = 0,$$

which is satisfied for

$$t_1 = -\frac{z_1a + z_2b + c}{a^2 + b^2}.$$

As the distance from z to the $R_L(z)$ is twice as large as the distance from z to the intersection point, we have

$$R_L(z) = z + 2t_1 \vec{v} = z - 2\frac{z_1 a + z_2 b + c}{a^2 + b^2}(a + ib)$$

(e) We first note that $z \mapsto \overline{z}$ is the reflection on the real axis.

Given a line L that goes through 0, i.e. c = 0, and we may assume without loss of generality that $a^2 + b^2 = 1$. We have

$$R_L(z) = z_1 - 2a(z_1a + z_2b) + i(z_2 - 2b(z_1a + z_2b))$$

= $z_1(1 - 2a^2) - z_2(2ab) + i(z_2(1 - 2b^2) - z_1(2ab))$
= $(1 - 2a^2 - 2iab)(z_1 - iz_2) = e^{\varphi}\bar{z}$

where we used $a^2 + b^2 = 1$ to see that $1 - 2a^2 = 2b^2 - 1$. Finally this number $1 - 2a^2 - 2iab$ is just a complex number and hence can be written as $e^{i\varphi}$ (where $\tan(\varphi) = 1 - 2a^2 - 2iab$).

(f) We want to find out which points are fixed by $z \mapsto e^{i\varphi} \bar{z}$. We have

$$z_1 + iz_2 = z = e^{i\varphi}\bar{z} = (\cos(\varphi) + i\sin(\varphi))(z_1 - iz_2)$$

= $z_1\cos(\varphi) + z_2\sin(\varphi) + i(z_1\sin(\varphi) - z_2\cos(\varphi))$

Comparing the real parts $z_1 = z_1 \cos(\varphi) + z_2 \sin(\varphi)$, we get

$$\frac{z_2}{z_1} = \frac{1 - \cos(\varphi)}{\sin(\varphi)}$$

(assuming $\sin(\varphi) \neq 0$), which is the slope of the line

$$y = \frac{1 - \cos(\varphi)}{\sin(\varphi)} x$$

along which $z \mapsto e^{i\varphi} \bar{z}$ reflects.

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	17. Mar. 2023

If $\sin(\varphi) = 0$, then $\cos(\varphi) \in \{\pm 1\}$. If $\cos(\varphi) = -1$, we obtain from comparing the real parts that $z_1 = -z_1$, i.e. $z_1 = 0$, so the line is the vertical line. If $\cos(\varphi) = 1$, then looking at the real part does not help, but comparing the imaginary part we obtain $z_2 = -z_2$, hence $z_2 = 0$, so in this case the line is the real axis.

(g) For the point reflection we get directly

$$Q_p(z) = \frac{-1z + 2p}{0z + 1} = \frac{-z + 2p}{z}$$

For the line reflection, we would like to use $z \mapsto e^{i\varphi} \bar{z}$, but need to take into account that lines may not pass through 0. If L is a line defined by ax + by + c = 0, then L_0 defined by ax + by = 0 is the parallel line through 0. For L_0 we know by (e) that there is a $\varphi > 0$ such that $R_{L_0}(z) = e^{i\varphi} \bar{z}$. We also know from (d) that

$$R_L(z) = z - 2\frac{az_1 + bz_2 + c}{a^2 + b^2}(a + ib)$$

= $z - 2\frac{az_1 + bz_2}{a^2 + b^2}(a + ib) - 2\frac{c}{a^2 + b^2}(a + ib)$
= $R_{L_0}(z) - 2\frac{c}{a^2 + b^2}(a + ib)$
= $e^{i\varphi}\bar{z} - 2\frac{c}{a^2 + b^2}(a + ib)$
= $\frac{e^{i\varphi}\bar{z} + \left(-2c\frac{(a + ib)}{a^2 + b^2}\right)}{0\bar{z} + 1}$

which writes R_L as an orientation-reversing Möbius transformation.

Exercise 2

Let $b \in \mathbb{C}$ and $\lambda > 0$. Let T_b be the translation by b and let M_{λ} be the multiplication by λ .

- (a) Describe the effect of $T_b \circ M_\lambda \circ T_{-b}$ geometrically.
- (b) Describe the effect of $M_{\lambda} \circ T_b \circ M_{\lambda^{-1}}$ geometrically.
- (c) Express the transformations in (a) and (b) as Möbius transformations.

Solution:

(a) While M_{λ} is a dilation by a factor λ centered at 0, $T_b \circ M_{\lambda} \circ T_{-b}$ is a dilation by a factor λ centered at b. The conjugation by T_b just changes the center of the dilation but does not change the *type* of transformation, (note $T_{-b} = (T_b)^{-1}$).

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	17. Mar. 2023

Symbolically, one can define $f: \mathbb{C} \to \mathbb{C}$ to be a dilation by a factor λ centered at p if for all $q \in \mathbb{C}: d(f(p), f(q)) = \lambda d(p, q)$ and f preserves lines trough p. It is clear that M_{λ} is a dilation. We claim that $f = T_b \circ M_{\lambda} \circ T_{-b}$ is a dilation by a factor λ centered at b. We first note that f(b) = b.

$$f(q) = b + \lambda(q - b)$$

$$d(f(b), f(q)) = |f(q) - f(b)| = |b + \lambda(q - b) - b| = \lambda|q - b| = \lambda d(b, q).$$

Lines through b are preserved under f, since for all $t \in \mathbb{R}$ and $v \in \mathbb{C}$,

$$f(b+tv) = b + \lambda((b+tv) - b) = b + (\lambda t)v$$

describes the same line.

(b) While T_b is a translation by the element $b \in \mathbb{C}$, $M_\lambda \circ T_b \circ M_{\lambda^{-1}}$ is also a translation, but by the element λb . The conjugation by M_λ just changes by how much the translation acts, but it does not change the *type* of transformation, (note $M_{\lambda^{-1}} = (M_\lambda)^{-1}$).

Symbolically, we have

$$M_{\lambda} \circ T_b \circ M_{\lambda^{-1}}(z) = \lambda(b + \lambda^{-1}z) = \lambda b + z = T_{\lambda b}(z).$$

(c) We have

$$T_b \circ M_\lambda \circ T_{-b}(z) = \frac{\lambda z + (1 - \lambda)b}{0z + 1}$$
$$M_\lambda \circ T_b \circ M_{\lambda^{-1}} = T_{\lambda b} = \frac{z + \lambda b}{0z + 1}.$$

Exercise 3

Given a group of matrices $G \subseteq M^{n \times n}(\mathbb{C})$, let $Z_G = \{g \in G : \forall h \in G : gh = hg\}$ be the center. Then PG is defined to be the group G/Z_G . Recall that for any field F and any $n \ge 1$,

$$\begin{aligned} \operatorname{GL}(n,F) &= \{g \in M^{n \times n}(F) \colon \det(g) \neq 0\} \\ \operatorname{SL}(n,F) &= \{g \in M^{n \times n}(F) \colon \det(g) = 1\}. \end{aligned}$$

- (a) Show that $PGL(2, \mathbb{R}) \cong PSL(2, \mathbb{R})$.
- (b) Show that $PGL(3, \mathbb{R}) \cong PSL(3, \mathbb{R})$.
- (c) What about $PGL(n, \mathbb{R})$ and $PSL(n, \mathbb{R})$ for $n \ge 4$?
- (d) Show that $PGL(n, \mathbb{C}) \cong PSL(n, \mathbb{C})$ for all $n \ge 2$.

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	17. Mar. 2023

Solution:

We need to calculate $Z_{\mathrm{GL}(n,\mathbb{F})}$ and $Z_{\mathrm{SL}(n,\mathbb{F})}$ for $\mathbb{F} = \mathbb{R}$ and $\mathbb{F} = \mathbb{C}$. We know that the matrix $\lambda \operatorname{Id}_n$ for $\lambda \in \mathbb{F}$ commutes with every other matrix of the same size. We claim that $A_{\lambda} = \lambda \operatorname{Id}_n$ are the only matrices that commute with every other matrix B. Let $A \in Z_{\mathrm{G}}$. For $i \neq j$, let B_{ij} be the matrix that has ones on the diagonal and a 1 in the entry (i, j) and 0 everywhere else (note that B_{ij} is contained in all the groups that we consider). We consider $B_{ij}A = AB_{ij}$, and in particular we consider the entry (i, j):

$$(B_{ij}A)_{ij} = \sum_{k} b_{ik}a_{kj} = b_{ii}a_{ij} + b_{ij}a_{jj} = a_{ij} + a_{jj}$$
$$(AB_{ij})_{ij} = \sum_{k} a_{ik}b_{kj} = a_{ij}b_{jj} + a_{ii}b_{ij} = a_{ij} + a_{ii}$$

which implies that $a_{ii} = a_{jj}$.

Next we consider the diagonal matrices $B = \text{Diag}(e^{2n}, e^{2n-2}, \dots, e^{-2n})$ (if *n* even) or $B = \text{Diag}(e^{2n+1}, e^{2n-1}, \dots, e^{-2n-1})$, (if *n* odd). Note that *B* is contained in all the groups we consider. We consider again the entry (i, j) (for $i \neq j$) of the matrix BA = AB to get

$$(AB)_{ij} = \sum_{k} a_{ik} b_{kj} = a_{ij} b_{jj}$$
$$(BA)_{ij} = \sum_{k} b_{ik} a_{kj} = b_{ii} a_{ij},$$

which are equal only if $a_{ij} = 0$.

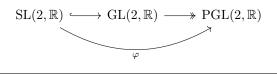
The two considerations above show that any $A \in Z_G$ has to be of the form $\lambda \operatorname{Id}_n$ for $\lambda \in \mathbb{F}$. Hence

$$Z_{\mathcal{G}} = \{A \in \mathcal{G} \colon A = \lambda \operatorname{Id}_n \text{ for } \lambda \in \mathbb{F}\}$$

(a) We have

$$Z_{\mathrm{GL}(2,\mathbb{R})} = \{\lambda \operatorname{Id}_2 \colon \lambda \in \mathbb{R} \setminus \{0\}\}$$
$$Z_{\mathrm{SL}(2,\mathbb{R})} = \{\lambda \operatorname{Id}_2 \colon \lambda = 1 \text{ or } \lambda = -1\}$$

We consider the map φ defined by first taking the inclusion and then the projection.



ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	17. Mar. 2023

We first show $\operatorname{Ker}(\varphi) = Z_{\operatorname{SL}(2,\mathbb{R})}$: Let $g \in \operatorname{SL}(2,\mathbb{R})$ such that $\varphi(g) = [\operatorname{Id}_2]$. This means that $g \in Z_{\operatorname{GL}(2,\mathbb{R})}$, i.e. $g = \lambda \operatorname{Id}_2$. Since $g \in \operatorname{SL}(2,\mathbb{R})$, $\lambda \in \{\pm 1\}$, i.e. $g \in Z_{\operatorname{SL}(2,\mathbb{R})}$. On the other hand, if $g \in Z_{\operatorname{SL}(2,\mathbb{R})}$, then $g = \lambda \operatorname{Id}_2$ with $\lambda \in \{\pm 1\}$ and thus $g \in Z_{\operatorname{GL}(2,\mathbb{R})}$, hence $g \in \operatorname{ker}(\varphi)$. By the isomorphism theorem we have

 $\operatorname{PSL}(2,\mathbb{R}) = \operatorname{SL}(2,\mathbb{R})/\ker(\varphi) \cong \operatorname{im}(\varphi) \subseteq \operatorname{PGL}(2,\mathbb{R}).$

To show that $PSL(2,\mathbb{R}) \neq PGL(2,\mathbb{R})$, we thus just have to show that φ is not surjective: Consider the matrix

$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \operatorname{GL}(2, \mathbb{R}) \setminus \operatorname{SL}(2, \mathbb{R})$$

For any $\lambda \operatorname{Id}_2 \in Z_{\operatorname{GL}(2,\mathbb{R})}$, we have

$$\det(A\lambda \operatorname{Id}_2) = \det(A) \det(\lambda \operatorname{Id}_2) = -1\lambda^2$$

which is always negative, hence $A\lambda \operatorname{Id}_2$ is never in $\operatorname{SL}(2,\mathbb{R})$, hence there is no preimage of [A] in $\operatorname{SL}(2,\mathbb{R})$ and $\operatorname{PGL}(2,\mathbb{R}) \ncong \operatorname{PSL}(2,\mathbb{R})$.

(b) We argue as in (a), it follows analogously that $\ker(\varphi) = Z_{\mathrm{SL}(3,\mathbb{R})}$. We again use the isomorphism theorem

 $\operatorname{PSL}(3,\mathbb{R}) = \operatorname{SL}(3,\mathbb{R})/\ker(\varphi) \cong \operatorname{im}(\varphi) \subseteq \operatorname{PGL}(3,\mathbb{R}).$

and this time show that φ is surjective. Given any $g \in \mathrm{GL}(3,\mathbb{R})$, consider the third root $\lambda_3 := (\det(g))^{1/3}$ of $\det(g)$. We can define $\lambda_3^{-1}g \in \mathrm{GL}(3,\mathbb{R})$. We have

$$\det(\lambda_3^{-1}g) = (\lambda_3^{-1})^3 \det(g) = 1,$$

hence $\lambda_3^{-1}g \in SL(3,\mathbb{R})$. We have $\varphi(\lambda_3^{-1}g) = [g]$ and hence φ is surjective, and hence

$$\operatorname{PSL}(3,\mathbb{R}) = \operatorname{PGL}(3,\mathbb{R}).$$

(3) For general n, we still have a function $\varphi \colon \mathrm{SL}(n,\mathbb{R}) \to \mathrm{PGL}(n,\mathbb{R})$ and we still have that $\ker(\varphi) = Z_{\mathrm{SL}(n,\mathbb{R})}$. For $g \in \mathrm{GL}(n,\mathbb{R})$ we can find a preimage as in (b) exactly when n is odd, since all real numbers then have an n-th root. When n is even, the projection of $g = \mathrm{Diag}(-1, 1, \ldots, 1)$ does not have a preimage, as there is no even power of a real number that is -1. We thus have

$$\operatorname{PSL}(n,\mathbb{R}) \quad \begin{cases} \cong \operatorname{PGL}(n,\mathbb{R}) & \text{if } n \text{ is odd} \\ \not\cong \operatorname{PGL}(n,\mathbb{R}) & \text{if } n \text{ is even} \end{cases}$$

(c) Also for \mathbb{C} , one can define $\varphi \colon \mathrm{SL}(n,\mathbb{C}) \to \mathrm{PGL}(n,\mathbb{C})$ and calculate its kernel ker $(\varphi) = Z_{\mathrm{SL}(n,\mathbb{C})}$. Since \mathbb{C} is algebraically closed, every number has an *n*-th root for every *n*. Thus the trick in (b) works for all matrices and φ is always surjective, showing the result.