Solutions 8

Exercise 1

- (a) Find an example of an elliptic Möbius transformation that preserves the unit disk.
- (b) Find an example of a hyperbolic Möbius transformation that preserves the unit disk.
- (c) Find an example of a parabolic Möbius transformation that preserves the unit disk.
- (d) Show that there is no loxodromic Möbius transformation that preserves the unit disk, except for the hyperbolic or elliptic ones.

Solution:

- (a) The standard elliptic Möbius transformation $z \mapsto e^{i\theta} z$ for $\theta \in (0, 2\pi)$ preserves the unit disk.
- (b) We have to find a hyperbolic transformation that preserves B_1 . A hyperbolic transformation is a Möbius transformation that is conjugated to the standard hyperbolic transformation $M_{\lambda}: z \mapsto \lambda z$ for $\lambda > 0$. We note that the standard hyperbolic transformation does not preserve B_1 . Note that the standard hyperbolic transformation fixes the points 0 and $\infty \in \hat{\mathbb{C}}$ and sends the real axis to itself. If we find a transformation f, that sends the real axis to the unit circle (and make sure that it preserves the interior), then we have found a transformation to conjugate by to get our hyperbolic element that preserves the unit disk. Luckily we already know, that the Cayley transformation

$$r_2 \colon z \mapsto \frac{z-i}{z+i}$$

sends the real line to the unit circle, (Sheet 5, Exercise 1). Thus the conjugation $r_2 \circ M_\lambda \circ r_2^{-1}$ sends the unit circle to the real line to the real line to the unit circle. The interior point $0 \in B_1$ is sent to i to λi , to $(\lambda - 1)/(\lambda + 1) \in B_1$. By continuity, $r_2 \circ M_\lambda \circ r_2^{-1}$ thus preserves the unit disk and is a hyperbolic transformation of B_1 .

To calculate the exact expression we use the isomorphism $PGL(2, \mathbb{C}) \cong M\ddot{o}b_+$. Then

$$r_2 \circ M_\lambda \circ r_2^{-1} = \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i & i \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \lambda i + i & \lambda i - i \\ \lambda i - i & \lambda i + i \end{bmatrix}$$
$$= \begin{bmatrix} \lambda + 1 & \lambda - 1 \\ \lambda - 1 & \lambda + 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{\lambda - 1}{\lambda + 1} \\ \frac{\lambda - 1}{\lambda + 1} & 1 \end{bmatrix}$$

which is just the Apollonian slide

 $K_t \colon z \mapsto \frac{z+t}{tz+1}$

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	21. Apr. 2023

for

$$t = \frac{\lambda - 1}{\lambda + 1}.$$

(c) The standard parabolic Möbius transformation is $T_b: z \mapsto z + b$ for $b \in \mathbb{C} \setminus \{0\}$. There is no $b \in \mathbb{C} \setminus \{0\}$ that preserves the unit disk, so we will have to find a conjugation. Taking $b \in \mathbb{R} \setminus \{0\}$, T_b preserves the real axis. So we can use the Cayley transformation again to conjugate T_b into a Möbius transformation that preserves the unit circle and then the unit disk. As in (b) we get the parabolic element $r_2 \circ T_b \circ r_2^{-1}$ that preserves the unit disk.

To calculate the exact expression we again use the isomorphism $PGL(2, \mathbb{C}) \cong M\"{o}b_+$. Then

$$r_2 \circ M_\lambda \circ r_2^{-1} = \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} \begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} i & i \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \lambda i + i & \lambda i - i \\ \lambda i - i & \lambda i + i \end{bmatrix}$$
$$= \begin{bmatrix} 2i - b & b \\ -b & 2i + b \end{bmatrix}$$

which corresponds to the Möbius transformation

$$z \mapsto \frac{(2i-b)z+b}{-bz+(2i+b)}.$$

(c) The standard loxodromic element is of the form $M_a: z \mapsto az$ with $a \in \mathbb{C} \setminus \{0\}$. If |a| = 1, then M_a is elliptic. If $a \in \mathbb{R}$, then M_a is hyperbolic. We notice that if the loxodromic element M_a is neither elliptic nor hyperbolic, then it does not fix a cline. Intuitively this is because its fixed points sets (its orbits) are spirals. Let us prove it rigorously: Let C be a circle with center z_0 and radius r, then the image of C under M_a

$$M_a(C) = M_a(\{z \in \mathbb{C} : |z - z_0| = r\}) = \{az \in \mathbb{C} : |z - z_0| = r\}$$
$$= \{z \in \mathbb{C} : |z/a - z_0| = r\} = \{z \in \mathbb{C} : |z - az_0| = |a|r\}$$

is a circle of radius $|a|r \neq r$. Thus, when M_a is not elliptic, then $|a| \neq 1$ and M_a does not fix the circle C. Let L be a line given by $L = \{z \in \mathbb{C} : z = z_0 + t \cdot v\}$ for $z_0, v \in \mathbb{C}, t \in \mathbb{R}$. Here v is the direction vector of the line. Then

$$M_a(L) = \{az \in \mathbb{C} : z = z_0 + tv\} = \{z \in \mathbb{C} : z/a = z_0 + tv\} \\ = \{z \in \mathbb{C} : z = az_0 + tav\}.$$

which is a line with direction vector $av \in \mathbb{C}$. If M_a is not hyperbolic, then $a \notin \mathbb{R}$, hence v and av point in different directions, hence M_a does not preserve the line L. Alltogether we saw that M_a does not preserve cirles or lines, hence it does not preserve a cline.

Since the standard loxodromic element M_a preserves no clines, also no conjugate $r^{-1} \circ M_a \circ r$ preserves a cline, if C were a cline preserved by $r^{-1} \circ M_a \circ r$, then r(C) would be a cline being preserved by M_a . By continuity, any loxodromic element preserving the unit disk also has to preserve the boundary of the unit disk, which is a cline. This is not possible, hence there is no loxodromic element preserving the unit disk (except for the elliptic and hyperbolic special cases).

Exercise 2

- (a) Find the stabilizer¹ of 0 in $M\ddot{o}b(B_1)$.
- (b) For a point $x \in B_1$, describe the stabilizer of x in $\text{M\"ob}(B_1)$ in terms of the group found in (a).
- (c) How many elements of $\text{M\"ob}(B_1)$ fix two points $x \neq y \in B_1$?

Solution:

(a) If

$$f \colon z \mapsto \frac{az+b}{cz+d}$$

is a map with f(0) = 0, then b = 0. We know from the lecture that the general form of an orientation preserving Möbius transformation preserving the unit disk is

$$z\mapsto \frac{az+b}{\bar{b}z+\bar{a}},$$

hence f is of the form

$$f \colon z \mapsto \frac{az}{\bar{a}} = \frac{a^2}{a\bar{a}}z = \frac{a^2}{|a|^2}z.$$

Since $a^2/|a|^2 \in S^1$, this is a rotation. We conclude that $\operatorname{Stab}_{\operatorname{M\"ob}_+(B_1)}(0) = \{z \mapsto bz \colon |b| = 1\} \cong \operatorname{PSO}(2).$

If we allow orientation reversing Möbius transformation we get

 $\operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(0) = \{ z \mapsto bz \colon |b| = 1 \} \cup \{ z \mapsto b\overline{z} \colon |b| = 1 \}.$

(b) We use the fact that for all $g \in \text{M\"ob}_+(B_1)$,

 $g\operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(0)g^{-1} = \operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(g(0))$

By the transitivity of the group action on B_1 , every element $x \in B_1$ can be written as g(0) = x for some $g \in \text{M\"ob}(B_1)$. Hence

$$\operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(x) = g^{-1} \operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(0)g.$$

¹The *stabilizer* of a point $x \in X$ in a group G acting on X is the subgroup $\{g \in G : g(x) = g\}$.

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	21. Apr. 2023

(c) We may restrict ourselves first to the case that $g \in \text{M\"ob}(B_1)$ fixes 0 and $x \in B_1$. Then if g is orientation preserving, g(z) = bz with |b| = 1and g(x) = x, hence bx = x, hence b = 1 and g = Id. If g is orientation reversing, then $g(z) = b\overline{z}$ with |b| = 1 and g(x) = x, hence $b\overline{x} = x$, hence

$$b = \frac{x}{\bar{x}} = \frac{x^2}{|x|^2}.$$

Denote by g_x the map $z \mapsto (x/|x|)^2 \overline{z}$. We have that $\operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(\{0, x\}) = \{\operatorname{Id}, g_x\}$ and only contains two elements.

Now in the general case, when we have two points $x, y \in B_1$, then we can find a $g \in \text{M\"ob}(B_1)$ such that g(x) = 0 by transitivity. We then apply the above argument to see that $\text{Stab}_{\text{M\"ob}(B_1)}(\{0, g(y)\})$ has two elements. Since

 $\operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(\{x, y\}) = g^{-1} \operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(\{0, g(y)\})g,$

 $\operatorname{Stab}_{\operatorname{M\"ob}(B_1)}(\{x, y\})$ also has two elements.

Exercise 3

Let 0 < t < 1 and K_t the Apollonian slide defined by

$$K_t(z) = \frac{z+t}{tz+1}.$$

- (a) Show that for all $s \in (-1, 1)$, $K_t(s) > s$.
- (b) Show that for all z ∈ B₁, lim_{n→∞} Kⁿ_t(z) = 1 and lim_{n→-∞} Kⁿ_t(z) = −1. Hint: It may help to see K_t as a one-parameter subgroup as in Sheet 7, Exercise 1.

Solution:

(a) Since |s| < 1, also $s^2 < 1$. Since t > 0, then $ts^2 < t$, hence $ts^2 + s < t + s$, i.e. s(st+1) < s+t and since st+1 > 0

$$K_t(s) = \frac{s+t}{st+1} > s.$$

(b) We use the one-parameter description $K_t = K_{tanh(t)}$. Note that $tanh(\mathbb{R}_{>0}) \subseteq (0,1)$ and $\lim_{t\to\infty} tanh(t) = 1$, as can be seen from the graph of tanh below, or by doing analysis using the definition

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

ETH Zürich	D-MATH	Geometrie
Prof. Dr. Tom Ilmanen	Raphael Appenzeller	21. Apr. 2023

