Solutions 8

Exercise 1

(a) Find an example of an elliptic Möbius transformation that preserves the unit disk.
(b) Find an example of a hyperbolic Möbius transformation that preserves the unit disk.
(c) Find an example of a parabolic Möbius transformation that preserves the unit disk.
(d) Show that there is no loxodromic Möbius transformation that preserves the unit disk, except for the hyperbolic or elliptic ones.

Solution:

(a) The standard elliptic Möbius transformation $z \mapsto e^{i \theta} z$ for $\theta \in(0,2 \pi)$ preserves the unit disk.
(b) We have to find a hyperbolic transformation that preserves B_{1}. A hyperbolic transformation is a Möbius transformation that is conjugated to the standard hyperbolic transformation $M_{\lambda}: z \mapsto \lambda z$ for $\lambda>0$. We note that the standard hyperbolic transformation does not preserve B_{1}. Note that the standard hyperbolic transformation fixes the points 0 and $\infty \in \widehat{\mathbb{C}}$ and sends the real axis to itself. If we find a transformation f, that sends the real axis to the unit circle (and make sure that it preserves the interior), then we have found a transformation to conjugate by to get our hyperbolic element that preserves the unit disk. Luckily we already know, that the Cayley transformation

$$
r_{2}: z \mapsto \frac{z-i}{z+i}
$$

sends the real line to the unit circle, (Sheet 5, Exercise 1). Thus the conjugation $r_{2} \circ M_{\lambda} \circ r_{2}^{-1}$ sends the unit circle to the real line to the real line to the unit circle. The interior point $0 \in B_{1}$ is sent to i to λi, to $(\lambda-1) /(\lambda+1) \in B_{1}$. By continuity, $r_{2} \circ M_{\lambda} \circ r_{2}^{-1}$ thus preserves the unit disk and is a hyperbolic transformation of B_{1}.
To calculate the exact expression we use the isomorphism $\operatorname{PGL}(2, \mathbb{C}) \cong$ Möb $_{+}$. Then

$$
\begin{aligned}
r_{2} \circ M_{\lambda} \circ r_{2}^{-1} & =\left[\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right]\left[\begin{array}{cc}
\lambda & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
i & i \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\lambda i+i & \lambda i-i \\
\lambda i-i & \lambda i+i
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda+1 & \lambda-1 \\
\lambda-1 & \lambda+1
\end{array}\right]=\left[\begin{array}{cc}
1 & \frac{\lambda-1}{\lambda+1} \\
\frac{\lambda-1}{\lambda+1} & 1
\end{array}\right]
\end{aligned}
$$

which is just the Apollonian slide

$$
K_{t}: z \mapsto \frac{z+t}{t z+1}
$$

for

$$
t=\frac{\lambda-1}{\lambda+1}
$$

(c) The standard parabolic Möbius transformation is $T_{b}: z \mapsto z+b$ for $b \in \mathbb{C} \backslash\{0\}$. There is no $b \in \mathbb{C} \backslash\{0\}$ that preserves the unit disk, so we will have to find a conjugation. Taking $b \in \mathbb{R} \backslash\{0\}, T_{b}$ preserves the real axis. So we can use the Cayley transformation again to conjugate T_{b} into a Möbius transformation that preserves the unit circle and then the unit disk. As in (b) we get the parabolic element $r_{2} \circ T_{b} \circ r_{2}^{-1}$ that preserves the unit disk.
To calculate the exact expression we again use the isomorphism $\operatorname{PGL}(2, \mathbb{C}) \cong$ Möb $_{+}$. Then

$$
\begin{aligned}
r_{2} \circ M_{\lambda} \circ r_{2}^{-1} & =\left[\begin{array}{cc}
1 & -i \\
1 & i
\end{array}\right]\left[\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
i & i \\
-1 & 1
\end{array}\right]=\left[\begin{array}{cc}
\lambda i+i & \lambda i-i \\
\lambda i-i & \lambda i+i
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 i-b & b \\
-b & 2 i+b
\end{array}\right]
\end{aligned}
$$

which corresponds to the Möbius transformation

$$
z \mapsto \frac{(2 i-b) z+b}{-b z+(2 i+b)}
$$

(c) The standard loxodromic element is of the form $M_{a}: z \mapsto a z$ with $a \in \mathbb{C} \backslash\{0\}$. If $|a|=1$, then M_{a} is elliptic. If $a \in \mathbb{R}$, then M_{a} is hyperbolic. We notice that if the loxodromic element M_{a} is neither elliptic nor hyperbolic, then it does not fix a cline. Intuitively this is because its fixed points sets (its orbits) are spirals. Let us prove it rigorously: Let C be a circle with center z_{0} and radius r, then the image of C under M_{a}

$$
\begin{aligned}
M_{a}(C) & =M_{a}\left(\left\{z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\}\right)=\left\{a z \in \mathbb{C}:\left|z-z_{0}\right|=r\right\} \\
& =\left\{z \in \mathbb{C}:\left|z / a-z_{0}\right|=r\right\}=\left\{z \in \mathbb{C}:\left|z-a z_{0}\right|=|a| r\right\}
\end{aligned}
$$

is a circle of radius $|a| r \neq r$. Thus, when M_{a} is not elliptic, then $|a| \neq 1$ and M_{a} does not fix the circle C. Let L be a line given by $L=\left\{z \in \mathbb{C}: z=z_{0}+t \cdot v\right\}$ for $z_{0}, v \in \mathbb{C}, t \in \mathbb{R}$. Here v is the direction vector of the line. Then

$$
\begin{aligned}
M_{a}(L) & =\left\{a z \in \mathbb{C}: z=z_{0}+t v\right\}=\left\{z \in \mathbb{C}: z / a=z_{0}+t v\right\} \\
& =\left\{z \in \mathbb{C}: z=a z_{0}+t a v\right\} .
\end{aligned}
$$

which is a line with direction vector $a v \in \mathbb{C}$. If M_{a} is not hyperbolic, then $a \notin \mathbb{R}$, hence v and $a v$ point in different directions, hence M_{a} does not preserve the line L. Alltogether we saw that M_{a} does not preserve cirles or lines, hence it does not preserve a cline.
Since the standard loxodromic element M_{a} preserves no clines, also no conjugate $r^{-1} \circ M_{a} \circ r$ preserves a cline, if C were a cline preserved
by $r^{-1} \circ M_{a} \circ r$, then $r(C)$ would be a cline being preserved by M_{a}. By continuity, any loxodromic element preserving the unit disk also has to preserve the boundary of the unit disk, which is a cline. This is not possible, hence there is no loxodromic element preserving the unit disk (except for the elliptic and hyperbolic special cases).

Exercise 2

(a) Find the stabilizer ${ }^{1}$ of 0 in $\operatorname{Möb}\left(B_{1}\right)$.
(b) For a point $x \in B_{1}$, describe the stabilizer of x in $\operatorname{Möb}\left(B_{1}\right)$ in terms of the group found in (a).
(c) How many elements of $\operatorname{Möb}\left(B_{1}\right)$ fix two points $x \neq y \in B_{1}$?

Solution:

(a) If

$$
f: z \mapsto \frac{a z+b}{c z+d}
$$

is a map with $f(0)=0$, then $b=0$. We know from the lecture that the general form of an orientation preserving Möbius transformation preserving the unit disk is

$$
z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}},
$$

hence f is of the form

$$
f: z \mapsto \frac{a z}{\bar{a}}=\frac{a^{2}}{a \bar{a}} z=\frac{a^{2}}{|a|^{2}} z .
$$

Since $a^{2} /|a|^{2} \in S^{1}$, this is a rotation. We conclude that $\operatorname{Stab}_{\text {Möb }_{+}\left(B_{1}\right)}(0)=\{z \mapsto b z:|b|=1\} \cong \operatorname{PSO}(2)$.
If we allow orientation reversing Möbius transformation we get

$$
\operatorname{Stab}_{\mathrm{Möb}\left(B_{1}\right)}(0)=\{z \mapsto b z:|b|=1\} \cup\{z \mapsto b \bar{z}:|b|=1\} .
$$

(b) We use the fact that for all $g \in \operatorname{Möb}_{+}\left(B_{1}\right)$,

$$
g \operatorname{Stab}_{\mathrm{Möb}\left(B_{1}\right)}(0) g^{-1}=\operatorname{Stab}_{\mathrm{Möb}\left(B_{1}\right)}(g(0))
$$

By the transitivity of the group action on B_{1}, every element $x \in B_{1}$ can be written as $g(0)=x$ for some $g \in \operatorname{Möb}\left(B_{1}\right)$. Hence

$$
\operatorname{Stab}_{\operatorname{Möb}\left(B_{1}\right)}(x)=g^{-1} \operatorname{Stab}_{\operatorname{Möb}\left(B_{1}\right)}(0) g .
$$

[^0](c) We may restrict ourselves first to the case that $g \in \operatorname{Möb}\left(B_{1}\right)$ fixes 0 and $x \in B_{1}$. Then if g is orientation preserving, $g(z)=b z$ with $|b|=1$ and $g(x)=x$, hence $b x=x$, hence $b=1$ and $g=\mathrm{Id}$. If g is orientation reversing, then $g(z)=b \bar{z}$ with $|b|=1$ and $g(x)=x$, hence $b \bar{x}=x$, hence
$$
b=\frac{x}{\bar{x}}=\frac{x^{2}}{|x|^{2}}
$$

Denote by g_{x} the map $z \mapsto(x /|x|)^{2} \bar{z}$. We have that $\operatorname{Stab}_{\mathrm{Möb}\left(B_{1}\right)}(\{0, x\})=\left\{\operatorname{Id}, g_{x}\right\}$ and only contains two elements.
Now in the general case, when we have two points $x, y \in B_{1}$, then we can find a $g \in \operatorname{Möb}\left(B_{1}\right)$ such that $g(x)=0$ by transitivity. We then apply the above argument to see that $\operatorname{Stab}_{\operatorname{Möb}\left(B_{1}\right)}(\{0, g(y)\})$ has two elements. Since

$$
\operatorname{Stab}_{\mathrm{Möb}\left(B_{1}\right)}(\{x, y\})=g^{-1} \operatorname{Stab}_{\operatorname{Möb}\left(B_{1}\right)}(\{0, g(y)\}) g,
$$

$\operatorname{Stab}_{\mathrm{Möb}\left(B_{1}\right)}(\{x, y\})$ also has two elements.

Exercise 3

Let $0<t<1$ and K_{t} the Apollonian slide defined by

$$
K_{t}(z)=\frac{z+t}{t z+1} .
$$

(a) Show that for all $s \in(-1,1), K_{t}(s)>s$.
(b) Show that for all $z \in B_{1}, \lim _{n \rightarrow \infty} K_{t}^{n}(z)=1$ and $\lim _{n \rightarrow-\infty} K_{t}^{n}(z)=-1$. Hint: It may help to see K_{t} as a one-parameter subgroup as in Sheet 7, Exercise 1.

Solution:

(a) Since $|s|<1$, also $s^{2}<1$. Since $t>0$, then $t s^{2}<t$, hence $t s^{2}+s<$ $t+s$, i.e. $s(s t+1)<s+t$ and since $s t+1>0$

$$
K_{t}(s)=\frac{s+t}{s t+1}>s
$$

(b) We use the one-parameter description $\tilde{K}_{t}=K_{\tanh (t)}$. Note that $\tanh \left(\mathbb{R}_{>0}\right) \subseteq(0,1)$ and $\lim _{t \rightarrow \infty} \tanh (t)=1$, as can be seen from the graph of tanh below, or by doing analysis using the definition

$$
\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} .
$$

We then have

$$
K_{t}^{n}=\tilde{K}_{\operatorname{atanh}(t)}^{n}=\tilde{K}_{n \cdot \operatorname{atanh}(t)}=K_{\tanh (n \cdot \operatorname{atanh}(t))}
$$

and as $n \rightarrow \infty, \tanh (n \cdot \operatorname{atanh}(t)) \rightarrow 1$, so

$$
\lim _{n \rightarrow \infty} K_{t}(z)=\lim _{s \rightarrow 1} K_{s}(z)=\lim _{s \rightarrow 1} \frac{z+s}{s z+1}=1 .
$$

Similarly, as $n \rightarrow-\infty, \tanh (n \cdot \operatorname{atanh}(t)) \rightarrow-1$ and thus

$$
\lim _{n \rightarrow-\infty} K_{t}(z)=\lim _{s \rightarrow-1} K_{s}(z)=\lim _{s \rightarrow-1} \frac{z+s}{s z+1}=\frac{z-1}{-z+1}=-1
$$

[^0]: ${ }^{1}$ The stabilizer of a point $x \in X$ in a group G acting on X is the subgroup $\{g \in G: g(x)=$ $g\}$.

