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PART I CHAPTER 1. PRELIMINARIES

Chapter 1

Preliminaries

§1 Metadata

Tom Ilmanen, lecturer

Raphael Appenzeller, organizer

Lectures:

Tuesday 11-12, HG D3.2

21.02.; 28.02.; 07.03.; 14.03.; 21.03.; 28.03.; 04.04.; 18.04.; 25.04.; 02.05.; 09.05.;
16.05.; 23.05.; 30.05.

Thursday 14-16, HG G5

23.02.; 02.03.; 09.03.; 16.03.; 23.03.; 30.03.; 06.04.; 20.04.; 27.04.; 04.05.; 11.05.;
25.05.; 01.06.

Exercise sections Monday 16-18, HG D3.2 and HG F5

Website: https:metaphor.ethz.ch/x/2023/fs/401-2534-00L/

Script: https:metaphor.ethz.ch/x/2023/fs/401-2534-00L/lib/geometrie.
2023.script-website-7mar23.pdf

Exam: The exam will be based on the exercises (problem sets).
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§2 Main References

Hyperbolic geometry:

• J. R. Weeks, The Shape of Space, CRC press, 2019, recommended. (See
the bibliography for additional excellent references.)

• M. Hitchman, Geometry with an Introduction to Cosmic Topology, https:
mphitchman.com/geometry/frontmatter.html, recommended.

• D. Lyons, Introduction to Groups and Geometries, hyperbolic section,
https:math.libretexts.org/Bookshelves/Abstract_and_Geometric_
Algebra/Introduction_to_Groups_and_Geometries_(Lyons)/03%3A_Geometries/
3.03%3A_Hyperbolic_geometry

• J. W. Anderson, Hyperbolic Geometry, Springer, 2005, recommended.
• W. P. Thurston, Three-dimensional Geometry and Topology, vol. I, Prince-

ton Univ. Press, 1997. (Not: "The Geometry and Topology of Three-
Manifolds". This is a different book.)

• B. Loustau, Hyperbolic geometry, online notes, https:arxiv.org/abs/
2003.11180, 2020.

• A. F. Beardon, The Geometry of Discrete Groups, Springer, 1983, pp.
56-82, 126-187.

More elementary:

• E. A. Abbott, Flatland, Dover Publications, 1884.

For more books, as well as articles, apps, blogs and so forth, see Part IV.

Mathematical symbols:

• Liste mathematischer Symbole,
https:de.wikipedia.org/wiki/Liste_mathematischer_Symbole

Mathematical dictionaries:

• G. Eisenreich, R. Sube, Dictionary of Mathematics; Wörterbuch Mathe-
matik, Verlag Harry Deutsch, 1987.
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Chapter 2

Introduction

§3 What is geometry?

There are several approaches to geometry:

1) Classical geometry

• lines, distance, angle, area, volume

2) Metric space geometry

• just distance. Can be very irregular.

3) Differential geometry (3rd year course. Won’t say much.)

Put a geometric structure on a space

• Riemannian metric → curved space, general relativity

• symplectic structure → abstract Hamiltonian systems

• complex structure → complex manifolds

4) Axiomatic geometry (won’t say much on this)

• Euclidean axioms

• spherical or hyperbolic axioms

• projective geometry (no metric)

5) Geometry as symmetry groups (Klein program)

Groups of structure-preserving transformations

Table of Contents 12
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• isometries (preserve distance)

• conformal maps (preserves angles)

• affine maps (preserves lines)

• similarities (preserves lines and angles)

• projective transformations

The space is homogenous (looks the same everywhere), because the action
of the group can take any point to any other point.

§4 Three spaces

Here’s what the course is about:

1) Moebius transformations
2) The hyperbolic plane

It’s different from the first-year course I used to teach. More advanced.

Let’s start with three spaces.

S2 sphere compact(finite) positive curvature

R2 Euclidean plane infinite zero curvature (flat)

H2 hyperbolic plane infinite negative curvature

Here is the 2-sphere:

Figure 4.1: The 2-sphere

We consider the 2-sphere as a world in itself. That is, we take the point of view
of an ant that lives on the surface of the sphere, and wanders around. He can’t
see off the sphere. Even his light rays travel along the surface of the sphere.

13 Table of Contents
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He experiences the geometry of the surface by walking. So, for him, the little
ant scientist, distance is the distance he walks. The shortest distance between
two points is a geodesic arc.

Figure 4.2: A geodesic arc

Wherever he goes on the sphere, it looks the same. We call this homogeneous.
Also, whichever direction he looks, it looks the same. We call this isotopic. So
the 2-sphere is homogeneous and isotropic.

Here is the Euclidean plane:

R
2

Figure 4.3: The Euclidean plane

The plane is also homogeneous and isotropic.

A space is called simply-connected if every loop can be contracted to a point
within the space. The above three spaces are simply connected, whereas the
surface of a torus is not.

Table of Contents 14
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It turns out that (up to scale) S2, R2 and H2 are the only simply-connected,
homogeneous, isotropic spaces in dimension 2.1 They are called 2-dimensional
space forms.

But what is the hyperbolic plane? That is harder to define, and will be a major
topic of the class. Here is a picture to give you an idea.

Figure 4.4: Order-4 bisected pentagonal tiling of the hyperbolic plane (Rocchini,
Wikipedia)

The blue triangles form a tessellation, or tiling, of the hyperbolic plane. They
are there to give you an idea of the geometry.2

The true distances on the hyperbolic plane are not as they appear.3 In fact, by
declaration, all the triangles are the same size.

Also, the sides of the triangles are “straight lines” for the inhabitants. That is,
in the local geometry, they are the shortest distance between two points.

Angles in the hyperbolic plane are the same as they appear to be. This is the
“conformal property” of this model of the hyperbolic plane.

Notice that as one goes to the edge of the disk, there are more and more triangles.
This shows that the distance to the edge is really infinite. For the inhabitants,
there is no edge; their world goes on forever.

It also reveals a related property of the hyperbolic plane: there is a huge amount
of area out towards infinity. It turns out that

1) The area of a disk grows roughly exponentially as a function of radius.

To be precise,
A(r) ∼ Cecr for large r. (4.1)

1We say “up to scale” because you can always multiply distances by a constant. This leads
to a different space, but it’s just a rescaling of the old space.

2See Uniform tilings in hyperbolic plane, Wikipedia.
3A. Korzybski: “The map is not the territory”.
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So area grows much faster than it does in the Euclidean plane, where A(r) = πr2.

Exercise 4.1 Argue for informally for (4.1) .

We will discuss this later in detail. Now I’m just giving an idea.

I mentioned that the sides of the triangle are hyperbolic lines. But in the model,
they are curves. In fact

2) The hyperbolic lines are precisely the arcs of circles in B1 that meet the
boundary.

This is related to a characteristic feature of the hyperbolic plane, which led to
its discovery in the early 1800s by Gauss, Bolyai, and Lobachevsky. They were
working with the classical axioms of Euclidean geometry, and became concerned
about the Parallel Postulate:

Axiom P: Through a point p not on a line L, there exists exactly
one line L′ parallel to L.

Note that by “parallel”, we mean that L′ does not intersect L. In the Euclidean
plane, this implies that L and L′ remain a constant distance apart forever.

Figure 4.5: Unique parallel through a given point

The burning question: Can the Parallel Postulate be proven from the other
axioms of Euclidean geometry?

If you replace Axiom P by

Axiom P′: Through every point p not on a line L, there no line
parallel to L,

then you get spherical geometry.1 In the 2-sphere, any two spherical lines (great
circles) intersect in exactly two points, if they don’t coincide.

1Strictly speaking: 1) You must change the other axioms slightly 2) You get either spherical
geometry or so-called elliptic geometry, a variant of spherical geometry.

Table of Contents 16
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Figure 4.6: Two intersection points

If you replace Axiom P by

Axiom P′′: Through every point p not on a line L, there exists
more than one line parallel to L,

then you get hyperbolic geometry. In the hyperbolic plane, there are an infinite
number of lines through p parallel to L.

Figure 4.7: Many parallels through a given point (via A. Zampa’s Geogebra applet)

Because of the existence of the hyperbolic plane, the Parallel Postulate cannot
be deduced from the other axioms.

The hyperbolic plane has many other strange features. For example,

3) To an inhabitant, objects of a given size at a given distance appear far
smaller in the hyperbolic plane than they do in Euclidean space.

4) Bodies moving in a straight line experience internal tidal effects, in con-
tract to Euclidean space.

17 Table of Contents
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Here is something very odd. Despite the huge size of the hyperbolic plane:

5) There is a universal upper bound to the area of a triangle.

To be precise, very strange.

There is a hyperbolic space Hn in every dimension. Here is a screenshot from
J. Weeks’ Curved Spaces app:

Figure 4.8: A tessellated hyperbolic space (J. Weeks’ Curved Spaces app)

Let’s fly around in hyperbolic space.

The following Curved Spaces app is by J. Weeks. There are various 3-dimensional
hyperbolic tessellations you can view.

• https:www.geometrygames.org/CurvedSpaces/index.html
This app, by Malin Christersson, lets you tile the hyperbolic plane, then smoothly
move the tiling around by hyperbolic isometries.

• https:www.malinc.se/noneuclidean/en/poincaretiling.php
On the internet, there are thousands of graphics, videos and blogs on hyperbolic
space. I found dozens on youtube alone. It’s everybody’s favorite subject. B.
Loustau wrote:1

Hyperbolic geometry... is the star of geometries, and geometry is
the star of mathematics!

1Loustau, p. 4.
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§5 Methodology

Axiomatic approach

There is a beautiful introduction to the axiomatic approach to geometry (Hilbert’s
axioms, slightly modified) at

• W. Aitken, Math 410: Modern Geometry,
https://public.csusm.edu/aitken_html/m410.

In the axiomatic approach, one presents undefined, initially unknowable objects.
They are characterized by a minimal set of axioms. The logical structure is
emphasized.

Model-based approach

The approach taken in these notes is roughly the opposite.

We study the Euclidean models of Möbius geometry and hyperbolic geometry
as gadgets sitting in Euclidean space. Group actions are central. But every
available means is employed to study them – vectors, matrices, functions, in-
tegrals, complex analysis, pictures (as many as possible), heuristic arguments.
There are even some bits of differential geometry. Effectively, these methods
constitute a “maximal” set of axioms.

Rather than the logical structure of the theory, the focus is on the phenomena.

The proofs fall generally into three types. Many results can be proven two or
three ways.

• Analytic geometry1

• Euclidean geometry2

• Groups

By “groups” we mean reducing the claim to a standard situation using the action
of the Möbius group or hyperbolic group.

Despite the emphasis on the messy mechanics of Euclidean models, I invite the
reader to imagine themself “in” hyperbolic space.

Background

The background of the students taking this course was

• Three-plus semesters of real analysis, including measure theory, ongoing

• Two semesters of linear algebra

• One semester of complex analysis

• One-plus semester of abstract algebra, ongoing

1Cartesian coordinates
2Theorems of plane and space geometry

https://public.csusm.edu/aitken_html/m410
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• One semester of topology, concurrent
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Chapter 3

What are Möbius
transformations?

§6 What are Möbius transformations?

In the first part of the course, we will study Möbius transformations.

They are smooth bijections of the extended complex plane Ĉ := C∪{∞}, which
is called the Riemann sphere since it is equivalent to the unit sphere S2 in R2.

Möbius transformations have the form

f(z) =
az + b

cz + d
, z ∈ Ĉ,

or
f(z) =

az̄ + b

cz̄ + d
, z ∈ Ĉ,

where a, b, c, d ∈ C, ad− bc 6= 0. They form a group.

Möbius transformations can be orientation-preserving or orientation-reversing.
The orientation-preserving ones are called fractional linear transformations.

In fact, the group of Möbius transformations is equivalent to the 2 × 2 matrix
group SL2(C), quotiented by ±1, which is called PSL2(C).

Möbius transformations have the special property that they are angle-preserving,
or conformal.

We will prove that the converse holds as well: all conformal bijections of the
sphere are Möbius transformations.

Another perspective is this. The Riemann sphere can also be understood as
the complex projective line CP1, and then the 2 × 2 matrix acts on so-called
“homogeneous coordinates”.
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Three essential properties of Möbius transformations are the following.

1) A cline is a circle or line in C ∪ {∞}. They correspond to circles on S2.
Möbius transformations take clines to clines.

2) The group of Möbius transformations is triply transitive on the Riemann
sphere, that is, its elements take any three distinct points of the Riemann sphere
to any other three distinct points. So the group is very flexible.

3) The Möbius transformations preserve the cross-ratio, defined as

[z1, z2; z3, z4] :=
(z3 − z1)(z4 − z2)

(z3 − z2)(z4 − z1)
.

for four distinct points in C ∪ {∞}.

Why study Möbius transformations?

The hyperbolic plane is defined via the Poincaré model, which is the unit disk
B1 in C equipped with hyperbolic distance, lines, and angles.

As we shall see, hyperbolic lines are just the arcs of circles in B1 that meet
the boundary orthogonally. The angles are the same as Euclidean angles. The
hyperbolic distance function can be defined using the cross-ratio.

But Möbius transformations preserve all of these things.

Indeed, it turns out that the isometries of the hyperbolic plane are precisely the
Möbius transformations that preserve the unit disk.

So the Möbius transformations are essential for studying the hyperbolic plane.
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Chapter 4

Some background

§7 Orientation properties

Heuristically, a map is orientation-preserving if it takes right hands to right
hands and left hands to left hands.

A map is orientation-reversing if it takes right hands to left hands and left hands
to right hands.

7−→

7−→

7−→

7−→

Figure 7.1: Orientation-preserving and orientation-reversing in R3. (www.houzz.com)

The heuristic definition works in R2 and R3.

Definition 7.1 Let L : Rn → Rn be linear. Then

(1) L is orientation-preserving iff det(L) > 0.

(2) L is orientation-reversing iff det(L) < 0.
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Let U be an open set in Rn. Let

f = (f1, . . . , fm) : U ⊆ Rn → Rm

be differentiable. Write

Df(x) =


∂f1

∂x1 · · · ∂f1

∂xn

...
. . .

...
∂fm

∂x1 · · · ∂fm

∂xn


for the Jacobi matrix. This yields a linear map

Df(x) : Rn → Rm

for each x ∈ U .

Definition 7.2 Let U , V be open sets in Rn. Let

f : U → V

be continuously differentiable. Then

(1) f is orientation-preserving at x if det(Df(x)) > 0.

(2) f is orientation-preserving if it is orientation-preserving for every x ∈ U .

(3) f is orientation-reversing at x if det(Df(x)) < 0.

(4) f is orientation-reversing if it is orientation-reversing for every x ∈ U .

If the determinant vanishes at a point, then the orientation character there is
undefined.

If det(Df(x)) 6= 0 everywhere in U , and U is a connected set, then by continuity
of the determinant, we will have either

det(Df(x)) > 0 everywhere on U , so f is orientation-preserving

or
det(Df(x)) < 0 everywhere on U , so f is orientation-reversing.

Multiplication rules

Let
E = orientation-preserving, R = orientation-reversing.

By the multiplicative property of determinants, we have the following rules:

E ◦ E = E

E ◦R = R

R ◦ E = R

R ◦R = E
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It’s a matter of parity – two reversals cancel.

We can summarize this in a table:

◦ E R
E E R
R R E

This is just the group Z2.

Inversion rules

If f is continuously differentiable and bijective, and det(Df(x)) never vanishes,
then by the inverse function theorem, the inverse function f−1 is also continu-
ously differentiable.

By the chain rule and the multiplicative property of the determinant, the Jaco-
bian determinant of f−1 at f(x) is given by the inverse of the Jacobian deter-
minant of f at x.

So if f is bijective and orientation-preserving, then f−1 is also orientation-
preserving.

And if f is bijective and orientation-reversing, then f−1 is also orientation-
reversing.

Examples

1) A holomorphic map
f : U ⊆ C→ C

is orientation-preserving wherever f ′(z) 6= 0.

Exercise 7.1 Prove this.

2) The nonconstant 1-dimensional complex affine map

C→ C, z 7→ az + b

where a 6= 0 ∈ C and b ∈ C, is an orientation-preserving bijection.

3) The complex inverse

N : C \ {0} → C \ {0}, z 7→ 1

z

is an orientation-preserving bijection.

4) Complex conjugation

C : C→ C, z 7→ z̄
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is orientation-reversing. It is mirror reflection across the x-axis.

5) By the above rules, if we compose maps of types 2), 3), and 4), then the map
is

• Orientation-preserving if there are an even number of conjugations,

• Orientation-reversing if there are an odd number of conjugations.
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§8 Similarities and isometries

Definition 8.1 Let X, Y be metric spaces. Let

f : X → Y.

(a) f is an isometry if f is a bijection and preserves distances between points:

dY (f(x), f(y)) = dX(x, y), x, y ∈ X. (8.1)

(b) f is a similarity if f scales distances by a constant factor:

dY (f(x), f(y)) = λdX(x, y), x, y ∈ X (8.2)

for some constant λ > 0.

Evidently every isometry is a similarity. Otherwise put, a similarity is an isom-
etry, but with a scale factor.

Define
Isom(X,Y ) := {f : X → Y |f is an isometry)

Isom(X) := Isom(X,X).

It is clear that compositions and inverses of isometries are isometries, and the
identity map is an isometry. We conclude:

Proposition 8.2 Isom(X) forms a group.

One of our main goals is to study the group of isometries of the hyperbolic
plane.

Here is a theorem that you can prove if you want to. Endow Rn with the
Euclidean metric.

Theorem 8.3 mybox The similarities from Rn to itself are precisely the maps
of the form

f(x) = λKx+ b

where λ > 0, K is an orthogonal matrix (K∗K = I), and b ∈ Rn. All similari-
ties of Rn are bijective. They form a group.

Define
Sim(Rn) := {f : Rn → Rn|f is a similarity}

to be this group.

Recall that an affine map is a map of the form

x 7→ Ax+ b (8.3)
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where A is a linear transformation and b is a vector. So similarities are affine
maps, but not conversely.

Note that similarities of Rn preserve straight lines and angles. In fact, the
converse is true as well: If f preserves straight lines and angles, then f must be
a similarity.

The above theorem says that there are plenty of Euclidean similarities, with
many different scale factors. Euclidean space is self-similar.

A striking feature of hyperbolic geometry is that there are no similarities except
for isometries – that is, the stretch factor of a similarity of the hyperbolic plane
must be 1. The space doesn’t scale.

The same thing is true of spherical geometry.

Orientation-preserving subgroups

Let G be a group of transformations of a space X. If X and the maps in G are
regular enough for orientation properties to be defined, set

G+(X) := {f ∈ G : f is orientation-preserving}.

So we have, for example,

Isom+(R2) ⊆ Isom(Rn), Sim+(R2) ⊆ Sim(Rn). (8.4)

Exercise 8.1 Show that in (8.4), these are subgroups of index 2.

The exercise uses the multiplicative properties of orientation-preserving and
orientation-reversing maps. In the exercise, the cosets of G+ in G are the
orientation-preserving maps G+, and the orientation-reversing maps G \G+.

Similarities of R2

Identify R2 with C. Consider the nonconstant 1-dimensional complex affine map

z 7→ az + b, z ∈ C,

where a 6= 0 ∈ C, b ∈ C. Writing a = reiθ, r > 0, z = x + iy, b = c + id, this
has the real matrix form(

x
y

)
7→ r

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
c
d

)
.

But this is a fully general map of the form (8.3).
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We have established the following important principle.

The orientation-preserving similarities of R2 are
precisely the nonconstant complex affine maps.

That is, Sim+(R2) coincides with Aff(C), the nonconstant complex affine maps
of C.

More generally, we have the following principle

The similarities of R2 equal the group generated
by the nonconstant complex affine maps, together
with complex conjugation.

Specifically, Sim(R2) consists of the maps

z 7→ az + b,

and
z 7→ az̄ + b,

where a 6= 0 ∈ C, b ∈ C.

That is, a similarity of R2 is a reflection (possibly), followed by a rotation,
followed by a dilation, followed by a translation.

Exercise 8.2 x

(a) Prove the second principle above.

(b) Give an example of a real affine map R2 → R2 that is not a similarity.

(c) Classify the similarities of R2 in terms of their fixed points.

Exercise 8.3 Show that Sim(R2) is the semidirect product

Sim(R2) ∼= Sim+(R2) o Z2.

We can take the Z2 to be generated by the complex conjugation map C : z 7→ z̄.
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Chapter 5

Stereographic projection

§9 The extended complex plane

We add a “point at infinity”, called ∞, to the complex plane to produce the
extended complex plane

Ĉ := C ∪ {∞}.

We can turn this into a topological space by declaring an open neighborhood of
∞ to be any set of the form

U ∪ {∞},

where U = C \K is the complement of a closed and bounded set K in C. This
is called “one point compactification” and can be done for any locally compact
Hausdorff space.

Exercise 9.1 Prove that the function N : Ĉ→ Ĉ,

N(z) :=


1

z
z 6= 0,∞

0 z =∞
∞ z = 0

is continuous with respect to the topology of Ĉ.

§10 The Riemann sphere and stereographic pro-
jection

We may identify Ĉ with the unit sphere S2 = {P ∈ R3 : |P |2 = 1} by stereo-
graphic projection, as follows.
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Write
P = (a, b, c)

for points P ∈ R3. Identify the complex plane C with the ab-plane R2 × {0}
inside R3. Then C is the horizontal plane containing the equator of S2. Define
the points

N = (0, 0, 1) (north pole), S = (0, 0,−1) (south pole)

in S2.

Let us define stereographic projection. It is a map

σ : S2 → C

defined as follows.

Let P ∈ S2, P 6= N . Draw a line L through N and P . Define σ(P ) to be the
point where L meets R2.

Figure 10.1: Stereographic projection (David Lyons, math.libretexts.org)

As P → N , the point σ(P )→∞. So define σ(N) to be∞, the point at infinity.

Geometrically, it is clear that σ is a bijection.

We have the following formula for σ:

Proposition 10.1 x

(a) Stereographic projection
σ : S2 → Ĉ

is given by

σ(P ) = σ(a, b, c) =


a+ ib

1− c
P 6= N

∞ P = N.

(10.1)

(b) Stereographic projection is a homeomorphism between S2 and Ĉ with the
given topology.
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Proof sketch x

(a) We need only check the case P 6= N . It is clear that σ(P ) lies in R2 × {0}.
The reader should verify that N = (0, 0, 1), P = (a, b, c), and the point

σ(P )
?
=

(
a

1− c
,

b

1− c
, 0

)
are collinear. This proves (a).

(b) It is clear that σ induces a bijection between the open sets in S2 that miss
N and the open sets in Ĉ that miss ∞, that is, σ|(S2 \ {N}) is obviously a
homeomorphism.

But the definition of open neighborhoods of ∞ in Ĉ implies that open sets in
S2 that contain N correspond under σ to open sets in Ĉ that contain ∞.

So σ is a homeomorphism.

2

So C “closes up” at infinity to form a space homeomorphic to S2. In this context,
S2 is called the Riemann sphere.

The inverse of stereographic projection

Let
τ = σ−1 : Ĉ→ S2

be the inverse of σ. It takes ∞ to N = (0, 0, 1).

Proposition 10.2 Let z = x+ iy. Then

τ(z) = τ(x, y) =


(2x, 2y, |z|2 − 1)

|z|2 + 1
z 6=∞

N z =∞.
(10.2)

Exercise 10.1 Check it.

§11 Stereographic projection from the south pole

We can also do stereographic projection from the south pole.

For P 6= S in S2, draw a line L through P and S. The point σ′(P ) in C is
defined as the intersection of L and C. Define σ′(S) =∞. We have
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Proposition 11.1 Stereographic projection from the south pole

σ′ : S2 → Ĉ

is given by

σ′(P ) = σ′(a, b, c) =


a+ ib

1 + c
P 6= S

∞ P = S.

(11.1)

We also have the formula for its inverse

τ ′ = (σ′)−1 : Ĉ→ S2.

To wit,

Proposition 11.2 Let z = x+ iy. Then

τ ′(z) = τ ′(x, y) =


(2x, 2y, 1− |z|2)

|z|2 + 1
z 6=∞

S z =∞.
(11.2)

Here is what it looks like if you stereographically project the earth from the
south pole. The map is infinite in extent, with an arbitrarily large amount of
expansion around the south pole.

Figure 11.1: Stereographic projection (Strebe, Wikipedia)

The infiniteness is not very well shown. It only gets to Australia. Here is a more
extensive map that shows part of Antarctica:
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Figure 11.2: Stereographic projection (Lars H. Rohwedder, Wikipedia)

The image of Antarctica fills the entire plane outside of a bounded set.
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Chapter 6

Möbius transformations

§12 Möbius transformations

Definition 12.1 A Möbius transformation is a function

f : Ĉ→ Ĉ

given by

f(z) =
az + b

cz + d
, z ∈ Ĉ, (orientation-preserving)

or
f(z) =

az̄ + b

cz̄ + d
, z ∈ Ĉ, (orientation-reversing)

where a, b, c, d ∈ C, ad− bc 6= 0.

The first kind (without the z̄) are called fractional linear transformations. They
are holomorphic (except at the pole −d/c), and therefore orientation-preserving.
They include the similarities az+ b, the complex inverse 1/z, and many others.

The second kind are antiholomorphic (except at−d̄/c̄), and therefore orientation-
reversing. They include complex conjugation, reflection in lines and circles, and
many others.

The effect of a Möbius transformation is non-linear and non-isometric in general.
Straight lines get all warped.

For example, consider the following picture, based on the so-called Apollonian
circles. It shows a transformation with two fixed points. Each blue circle gets
mapped to the next blue circle. Each red circle flows from the left fixed point
towards the right fixed point. It is a little bit like a translation from the left fixed
point to the right fixed point. This is an example of a hyperbolic transformation.
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Figure 12.1: A hyperbolic Möbius transformation (WillowW, Pbroks13, Wikipedia)

Another interpretation of the picture is as follows. It still has the two fixed
points 1, −1. Each red circle gets mapped to the next red circle. Each blue
circle flows along itself from the bottom to the top (between the fixed points)
and from the top to the bottom (near the sides of the picture). In the vicinity
of each fixed point, it is a bit like a rotation. This is an example of an elliptic
transformation.

Figure 12.2: An elliptic Möbius transformatio (WillowW, Pbroks13, Wikipedia, mod-
ified)

Exercise 12.1 Inspired by the two images, find all Möbius transformations that
fix −1 and 1. Relate them to the images.

Exercise 12.2 Inspired by the two images, prove that every orientation-preserving
Möbius transformation has either one fixed point, or two fixed points, or is the
identity map. Draw some examples.

A well-known video about Möbius transformations, by D. Arnold and J. Rog-
ness, is https:www.youtube.com/watch?v=0z1fIsUNhO4. Of course there are
many others.
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The set of all Möbius transformations is called Möb. The set of all orientation-
preserving Möbius transformation is called Möb+.

Goals over the next few weeks:

Our initial goals are the following:

• Clarify the definition
• Prove they are homeomorphisms
• Prove they form a group – what group is it?
• Prove they take clines to clines (a cline is a circle or a line)
• Prove they are conformal (preserve angles)

§13 Clarifying the definition

The nondegeneracy condition

Why do we require ad− bc 6= 0?

If ad− bc = 0, then
a : c = b : d

and we get either
a = ec, b = ed

for some e ∈ C, or
c = fa, d = fb

for some f ∈ C (usually both).

In the first case, we get

az + b

cz + d
=
ecz + ed

cz + d
=
e(cz + d)

cz + d
= e,

which is a constant.1

In the second case, the only new possibility is f = 0, and it leads to

az + b

cz + d
=
az + b

0
=∞,

which is again a constant.2

We don’t allow f to be a constant, so we require ad− bc 6= 0.

The analysis in the orientation-reversing case is similar.

On the other hand, if ad− bc 6= 0, then f is invertible, as we shall see in §17.
1We have ignored the point z = −d/c.
2We have ignored the point z = −b/a.
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Handling the two “bad” points

We wish to define the Möbius tranformation f on all of Ĉ.

Consider the orientation-preserving case. So

f(z) =
az + b

cz + d
. (13.1)

There are two “bad” points where the formula does not work literally. They are

z =∞ and z = −d
c
.

In the latter case the denominator is zero. Let

U := Ĉ \ {−d/c,∞}.

Then
f(z) =

az + b

cz + d
, z ∈ U (13.2)

is a continuous function on U . We must extend f to the two missing points.

We adopt the convention that

e

0
=∞ when e 6= 0.

This is justified by Exercise 9.1. Then we declare the special rules

f(∞) :=
a

c
, f

(
−d
c

)
:=∞.

Note that because of the condition ad − bc 6= 0, we never get the form 0/0 for
a/c or b/d, so these rules are well-defined.

The definition f(−d/c) =∞ is informally motivated by

f(−d/c) =
a(−d/c) + b

c(−d/c) + d
=
6= 0

0
=∞.

The definition f(∞) = a/c is informally motivated by

f(∞) =
a · ∞+ b

c · ∞+ d
=
a · ∞
c · ∞

=
a

c
.

The finite terms are overwhelmed by the infinite terms to the point that they
can be dropped.
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We will justify these heuristic definitions rigorously below.

There is a situation where both rules apply. Suppose that c = 0. This is the
case of a complex affine map

z 7→ (a/d)z + b/d = a′z + b′.

Then the “bad” points coincide:

−d
c

=∞

and the special rules reduce to

f(∞) =∞.

The net result is that in the orientation-preserving case, f(z) is defined for all
z.

We now justify these rules formally:

Proposition 13.1 The special rules are the unique value assignments that ex-
tend f continuously from U to Ĉ.

The upshot is that the two special points are not “bad” points after all. They
are like all the other points.

Proof x

The proof is a little picky, but we write it out in detail for completeness.

Since U is dense in Ĉ, there can be at most one continuous extension of f from
U to Ĉ. This proves uniqueness.

It remains to prove that the extended f is continuous at z = −d/c, 0.
Case 1: Assume c = 0.

Then f is affine of the form

f(z) = a′z + b′, a′ 6= 0

and −d/c coincides with ∞. So we need only check continuity at z = ∞. We
get

lim
z→∞

f(z) = lim
z→∞

a′z + b′

=∞
= f(∞)

using the topology defined on Ĉ, and the definition of f at∞. So f is continuous
at ∞ in this case.
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Case 2: Assume c 6= 0.

1) Work at z = −d/c. We have

lim
z→−d/c

f(z) = lim
z→−d/c

az + b

cz + d
. (13.3)

Now

lim
z→−d/c

(az + b) = a(−d/c) + b =
1

c
(−ad+ bc) 6= 0

since c 6= 0, ad− bc 6= 0. But also

lim
z→−d/c

(cz + d) = 0

So in (13.3), the numerator converges to a finite, nonzero number, whereas the
denominator converges to zero. Using the topology defined on Ĉ, it follows by
a slight extension of 9.1 that

lim
z→−d/c

f(z) = lim
z→−d/c

az + b

cz + d

=∞
= f(−d/c)

by the definition of f at −d/c. So f is continuous at −d/c.
2) Work at z =∞. We have

lim
z→∞

f(z) = lim
z→∞

az + b

cz + d

= lim
z→∞

a+ b/z

c+ d/z

since z 6= 0,∞. Now using the topology of Ĉ

lim
z→∞

(a+ b/z) = a

whereas
lim
z→∞

(c+ d/z) = c 6= 0

so

lim
z→∞

f(z) =
a

c

= f(∞)

by definition. So f is continuous at −d/c. So f is continuous.

2
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The orientation-reversing case

In the orientation-reversing case, we have

f(z) =
az̄ + b

cz̄ + d
.

We interpret this as defining
f := g ◦ C

where
g(z) =

az + b

cz + d

is orientation-preserving, and
C(z) := z̄

denotes complex conjugation. Define C(∞) = ∞. Clearly C : Ĉ → Ĉ is
continuous. So f = g ◦ C is well defined and continuous.

Summarizing the two cases,

Theorem 13.2 Every Möbius expression yields a well-defined, continuous map

f : Ĉ→ Ĉ.

§14 Three involutions

Consider the three Möbius transformations Ĉ→ Ĉ defined by

N : z → 1

z
, S : z → 1

z̄
=

z

|z|2
, C : z → z̄.

Each one is an involution, that is, a group element whose square is the identity.
The map N is the complex inverse, S is inversion in the unit circle,1 and C is
complex conjugation.

Let us study the action of S on Ĉ. It takes 0 to ∞ and ∞ to 0, so these are the
bad points. It exchanges the inside and outside of the unit circle S1. It fixes
each point of S1.

What map does this induce on the Riemann sphere?

By definition, it induces the map

S̃ := σ−1 ◦ S ◦ σ : S2 → S2

obtained by conjugation. What is this map?

1Denoted by J in an earlier version of the notes.
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Proposition 14.1 One has

S̃ : (a, b, c) 7→ (a, b,−c)

that is,
S̃ is reflection in the ab-plane.

S̃ exchanges the northern and southern hemispheres, and leaves the equator
fixed. The Proposition is proven in §44. But it is quite easy.

Exercise 14.1 Prove this now. (Hint: Use formulas 10.2 and 11.1.)

IMAGE: Reflection in the ab-plane

The “bad points” 0 and∞ correspond to the north and south pole of S2. But S̃
is perfectly smooth near the poles. So these points aren’t singular at all when
viewed in the S2 setting.

In the course of these notes, we will see that for any f , the two special points
∞ and f−1(∞) are always nice and smooth when we work on S2. The pole is
no longer a pole, and infinity is just an ordinary point. We will prove this in
§63-§65.

Let us look at the action of all three maps on the Riemann sphere.

Exercise 14.2 x

a) Derive formulas for the actions of N , S, and C on the Riemann sphere
considered as the round sphere S2 in R3. Observe that there are no singular
points.

b) Describe the maps geometrically.

We end the section with the group generated by N , S, C.

Proposition 14.2 One has

S = N ◦ C = C ◦N, N = C ◦ S = S ◦ C, C = S ◦N = N ◦ S.

That is, they commute, and the product of any two is the third. Also

S2 = C2 = N2 = id.

We recognize this as the Klein 4-group.

Exercise 14.3 x

(a) Verify the above relations and make a group table.

(b) Which of these maps are orientation-preserving, resp. orientation-reversing?
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Chapter 7

The group of Möbius
transformations

§15 Transformation groups

Let X be a set. Write

Per(X) := {permutations of X}
= {bijections from X to X}.

A (left) action of a group G on X is a homomorphism

ρ : G→ Per(X).

Alternately, a group action can be written as a function

G×X → X, (g, x) 7→ g · x

satisfying the following axioms, where e is the identity element of G,

1) e · x = x, x ∈ X
2) f · (g · x) = (fg) · x, f, g ∈ G, x ∈ X.

The two formulations are equivalent under the relation ρ(f)(x) = f · x.
Informally we can write f · x as f(x).

A transformation group is a subgroup of the group of permutations of a set X.
So it is an injective group action.

A set of permutations that preserve some structure is always a transformation
group.
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Conversly, when we speak of a transformation group, we usually have in mind
that there is some geometric-like structure that it preserves. If there is no
structure, we would speak of a permutation group.

See Geometrie 2020, Section 20.1 That script is full of information about sym-
metry groups.

Examples:

• Isom(X)

• Sim(Rn)

• Aff(Rn) (the group of invertible affine transformations)
• Diff(U) (the group of diffeomorphisms of an open set U)
• Matrix groups
• The symmetry group of a Platonic solid
• The group of isometries that respect a hyperbolic tiling.

Our task in the next two sections is to show that the Möbius transformations
form a group.

§16 Möb+ is a group

Theorem 16.1 Möb+ is a group.

Indeed, Möb+ is a transformation group acting on Ĉ.

Proof We must prove that Möb+
(1) Has an identity element.
(2) Has inverses.
(3) Is closed under composition.
(4) Satisfies the associative law f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Statement (1) is obvious, because the identity map

z 7→ z =
1z + 0

0z + 1
, 1 · 1− 0 · 0 6= 0,

lies in Möb+.

Statement (4) is clear, because the elements of Möb+ are functions, and the
composition of functions satisfies the associative law.

We’ll prove (2) and (3) in the next two sections.

2

1See §147.
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§17 Möbius transformations are invertible

Proposition 17.1 Let f ∈ Möb+. Then

(a) f is bijective, and f−1 ∈ Möb+.

(b) f is a homeomorphism.

(c) If

f(z) =
az + b

cz + d

then
f−1(z) =

dz − b
−cz + a

.

Result (a) establishes Statement (2) in the proof of Theorem 16.1.

Proof x

1. Let
f(z) =

az + b

cz + d
, ad− bc 6= 0.

Let us find a formula for f−1. Solve

f(z) =
az + b

cz + d
= w

for z in terms of w. We get

az + b = czw + dw

az − czw = dw − b
z(a− cw) = dw − b

z =
dw − b
−cw + a

.

2. Motivated by this, set

g(z) :=
dz − b
−cz + a

.

Observe that
da− (−b)(−c) = ad− bc 6= 0.

so g is a Möbius transformation.

3. We will verify that g is the inverse of f . There really is something to check,
because we haven’t been careful about division by zero or the “special points”.
Plus, we haven’t used the condition ad− bc 6= 0.

So we must verify
g ◦ f = f ◦ g = idĈ.
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4. Let us do the first of these. Assume

z 6= −d
c
,∞.

Then f(z) is classically defined, without special rules, and

f(z) 6=∞, a
c
.

(Verify.) So g(f(z)) is classically defined, without special rules. Compute

g(f(z)) =
d
(
az+b
cz+d

)
− b

−c
(
az+b
cz+d

)
+ a

=
d(az + b)− b(cz + d)

−c(az + b) + a(cz + d)

=
(ad− bc)z
ad− bc

= z,

for z 6= −d/c,∞, where we have used the fact that ad − bc 6= 0 in an essential
way.

5. Similarly, suppose
z 6=∞, a

c
.

Then
g(z) 6= d

c
,∞,

and f ◦ g is classically defined, yielding

g(f(z)) = z

for z 6=∞, a/c.
These computations show that

f |(Ĉ \ {−d/c,∞}) : Ĉ \ {−d/c,∞} → Ĉ \ {∞, a/c}

is a bijection, with inverse
g|(Ĉ \ {∞, a/c}).

6. Using the special rules at the omitted points, we verify

g(f(∞)) = g(a/c) =∞, g(f(−d/c)) = g(∞) = −d/c,

and similarly

f(g(a/c)) = f(∞) = a/c, f(g(∞)) = f(−d/c) =∞.
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So f is bijective and g is its inverse.1

We have proven (a) and (c).

7. Note that by Proposition 13.2, f is continuous, and its inverse is a Möbius
transformation, hence its inverse is also continuous. So f is a homeomorphism.
This proves (b).

Remark: You could also invoke just the forward continuity, because a continuous
bijection between compact Hausdorff spaces is automatically continuous in both
directions. Otherwise said: If X is a compact Hausdorff space, you can’t refine
the topology while remaining compact, nor coarsen the topology while remaining
Hausdorff.

2

§18 Composition of orientation-preserving Möbius
transformations

In this section we work with orientation-preserving Möbius transformations (the
ones without the z̄).

We will show that Möb+ is closed under composition.

We will derive a formula for the composition. In the next section, we will see
that it is essentially just matrix multiplication.

Proposition 18.1 Let f, g ∈ Möb+. Then f ◦ g ∈ Möb+.

This establishes Statement (3) in the proof of Theorem 16.1.

Proof 1. Let

f(z) =
az + b

cz + d
, ad− bc 6= 0,

and

g(z) =
ez + f

gz + h
, eh− gf 6= 0

be elements of Möb+. Let us compute the composition f ◦ g.
Fix z. As long as no ∞ occurs during the computation, we get by ordinary

1Note that this even works in the extra-special case −d/c =∞, a/c =∞.
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arithmetic,

f(g(z)) =
a(ez + f)/(gz + h) + b

c(ez + f)/(gz + h) + d

=
a(ez + f) + b(gz + h)

c(ez + f) + d(gz + h)

=
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)
.

That is, at such “good” points,

f(g(z)) =
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)
. (18.1)

This has the general form of a Möbius transformation, but we have to verify the
nonzero “determinant”. We get

(ae+ bg)(cf + dh)− (af + bh)(ce+ dg)

= aecf + aedh+ bgcf + bgdh− afce− afdg − bhce− bhdg
= aedh+ bgcf − afdg − bhce
= (ad− bc)(eh− fg)

6= 0.

So the expression on the RHS of (18.1) defines a Möbius transformation h ∈
Möb+. At all “good” points z,

f(g(z)) = h(z).

2. What about the special points where an infinity occurs?

In the domain of f ◦ g, these are the three points (not necessarily distinct)

∞, g−1(∞), g−1(f−∞(∞)).

They lead to three pathways, as shows in the picture:

Now f and g are homeomorphisms, so f ◦ g is a homeomorphism. On the other
hand, h is a homeomorphism. Since we already have f ◦ g = h everywhere
but these three points, by continuity we get that even at these three points,
f(g(z)) = h(z). So

f ◦ g = h

So
f ◦ g ∈ Möb+.

2
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Remark 1. Alternately, we could have verified f ◦ g = h at the three special
points simply by applying the “special rules” directly.

Remark 2. Note that the middle trajectory in the picture above is not “special”
for h – the value on the RHS of (18.1) is well-defined classically. This is true
even though the composition of f and g goes through the point ∞. The map
has “healed”. This “healing” process is typical in algebraic geometry.

Completion of the proof of Theorem 16.1 We have now verified (1), (2),
(3), (4) in the proof of Theorem 16.1. So Möb+ is a group.

2

§19 Möb is a group

Theorem 19.1 Möb is a group.

Indeed, in the course of the proof we will see that it is the group generated by
Möb+ and complex conjugation C.

Proof 1. We could do this by direct computation involving expressions like

az + b

cz + d
,

ez̄ + f

gz̄ + h
,

but we choose to do it a little more abstractly.

All elements of Möb have the form

f or f ◦ C

where f ∈ Möb+ and C(z) = z̄ is complex conjugation.

Claim Möb is closed under composition and taking inverses.

To prove the Claim, note the obvious formulas

C2 = id, C−1 = C,

and
f ◦ C = C ◦ f̆

where f̆ is defined by

f̆(z) :=
āz + b̄

c̄z + d̄
.

Table of Contents 50



CHAPTER 7. THE GROUP OF MÖBIUS TRANSFORMATIONS PART II

whenever
f(z) =

az + b

cz + d
.

2. Closed under taking inverses:

Let f ∈ Möb+. We must show

f−1, (f ◦ C)−1 ∈ Möb.

The first is obvious since Möb+ is closed under taking inverses.

For the second, compute

(f ◦ C)−1 = C−1 ◦ f−1

= C ◦ f−1

=
(

f−1 ◦C
∈ Möb,

since f ∈ Möb+, so f−1 ∈ Möb+, so

(

f−1 ∈ Möb+.

So Möb is closed under taking inverses.

3. Closed under composition:

Let f, g ∈ Möb+. We must show

f ◦ g, f ◦ (g ◦ C), (f ◦ C) ◦ g, (f ◦ C) ◦ (g ◦ C)

all lie in Möb. The first two are obvious. Namely,

f ◦ g ∈ Möb,

f ◦ (g ◦ C) = (f ◦ g) ◦ C ∈ Möb,

since Möb+ is closed under composition.

For the third product, compute

(f ◦ C) ◦ g = f ◦ (C ◦ g)

= f ◦ (ğ ◦ C)

= (f ◦ ğ) ◦ C
∈ Möb.

For the fourth product, compute

(f ◦ C) ◦ (g ◦ C) = f ◦ (C ◦ g) ◦ C
= f ◦ (ğ ◦ C) ◦ C
= (f ◦ ğ) ◦ (C ◦ C)

= f ◦ ğ
∈ Möb.
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So Möb is closed under composition.

This completes the proof of the Claim. So Möb is a group.

2

Exercise 19.1 Show that the inverse of

f(z) =
az̄ + b

cz̄ + d

is

f−1(z) =
d̄z̄ − b̄
−c̄z̄ + ā

.

Relation of Möb to Möb+

From the Theorem we can easily prove

Proposition 19.2 x

(a) Möb+ is a subgroup of index 2 in Möb.

(b) Möb is a semidirect product

Möb = Möb+ o Z2.

The cosets of Möb+ in Möb are the orientation-preserving maps Möb+, and the
orientation-reversing maps Möb \Möb+.

§20 Transitivity

Let a group G act on a set X. One says that G acts transitively on X if

For all x, y ∈ X, there exists g ∈ G such that g · x = y.

A basic example: The group of Euclidean motions (rigid motions) of R3 acts
transitively on R3.

When a group acts transitively on a set, it means that from the point of view
of the group action, all of the points of the set look the same. So the set is
“homogeneous” with respect to the group. That is the basis of geometry in the
classical sense (meaning Klein’s sense).

Theorem 20.1 Möb+ acts transitively on Ĉ.
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Proof Just using affine transformations z 7→ az + b you can get from any z in
C to any w in C. But then using the inverse map z 7→ 1/z, you can send 0 to
∞. By composing such maps, you can get from any z in Ĉ to any w in Ĉ.

2

The transitivity of the action of Möbius transformations on various objects –
points, lines, circles, segments, triangles and so forth – is very important.

In fact, the Möbius transformations turn out to have a supercharged version of
transitivity, call triple transitivity. See Chapter 30.
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Chapter 8

Relation to matrix groups

§21 Our main groups

Our most important examples will be

Möb, Möb(B1), Conf(S2), Conf(B1), PSL2(C), PSL2(R), Isom(H2).

Here
Möb(B1) := {f ∈ Möb : f(B1) = B1},

which is a subgroup of Möb – the subgroup that preserves the unit disk.

And Conf(S2) is the group of conformal transformations of the sphere, and
Conf(B1) is the group of conformal transformations of the unit disk. These are
presented in §62.

And PSL2(R) and PSL2(C) are projectivized matrix groups, to be explained
in the next section.

Finally, Isom(H2) is the group of hyperbolic isometries.

We will eventually show

Möb ∼= Conf(S2), Möb+ ∼= Conf+(S2) ∼= PSL2(C)

Isom(H2) ∼= Möb(B1) ∼= Conf(B1),

Isom+(H2) ∼= Möb+(B1) ∼= Conf+(B1) ∼= PSL2(R).

All this will be explained. I just wanted to give an overview.

Note that these are all Lie groups. A Lie group is a smooth manifold that is
also a group, such that the group operations are smooth. Matrix groups and all
reasonable subgroups are Lie groups.
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Advanced note

For 3-dimensional hyperbolic space we have

Isom(H3) ∼= Möb, Isom+(H3) ∼= Möb+(B1).

But we probably won’t get to this. See the references.

§22 Projective linear groups

Something about the composition rule for fractional linear transformations re-
sembles matrix multiplication, especially the part where the “determinants” mul-
tiply.

Let us try representing
az + b

cz + d

by a matrix

A =

(
a b
c d

)
.

Let

λA =

(
λa λb
λc λd

)
, λ ∈ C.

Then A and λA, λ 6= 0, represent the same transformation, because

az + b

cz + d
=
λaz + λb

λcz + λd

for λ 6= 0.

Groups over C

Motivated by this, let’s define some matrix groups, and try to iron out this
“scalar ambiguity”.

Define

GL2(C) :=

{(
a b
c d

)
: ad− bc 6= 0, a, b, c, d ∈ C

}
.

It is the general linear group over C, consisting of invertible complex 2 × 2
matrices, a (linear) transformation group of C2.

Define the special linear group over C

SL2(C) :=

{(
a b
c d

)
: ad− bc = 1, a, b, c, d ∈ C

}
.
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a subgroup ofGL2(C). It is the group of 2×2 complex matrices with determinant
1. Again, it is a transformation group of C2.

Let
I :=

(
1 0
0 1

)
be the identity matrix. Let C∗ = C \ {0}. Then

C∗ · I := {λI : λ ∈ C∗}

is an abelian subgroup of GL2(C).

Note that
det(−I) = (−1)(−1) = 1.

So
{I,−I}

is an abelian subgroup of SL2(C).

Exercise 22.1 x

(a) Prove that C∗ · I is the center of GL2(C).

(b) Prove that {I,−I} is the center of SL2(C).

In SL2(C), we’ve eliminated nearly all the “scalar ambiguity”, but we still have
the fact that the matrices I and −I produce the same fractional linear trans-
formation, because

1z + 0

0z + 1
=

(−1)z + 0

0z + (−1)
.

We have to take a quotient. Define

PGL2(C) := GL2(C)/(C∗ · I).

We have quotiented out by the equivalence relation

A ∼ B ⇐⇒ A = λB for some λ ∈ C∗.

So we have gotten rid of the scalar ambiguity of GL2(C) altogether. This is the
projective general linear group over C.

Define
PSL2(C) := SL2(C)/{I,−I}.

Again, we have gotten rid of the scalar ambiguity. This is the projective special
linear group over C.

These groups are evidently the same:

PSL2(C) ∼= PGL2(C)

by a natural isomorphism.
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Exercise 22.2 Verify this isomorphism. (Hint: Use the Second Isomorphism
Theorem for groups, namely G/K ∼= H/(H ∩K) for suitable G, H, K.)

We will generally prefer the notation PSL2(C). This group is no longer a
transformation group of C2.

Groups over R

In a similar way, define the general linear group over R

GL2(R) :=

{(
a b
c d

)
: ad− bc 6= 0, a, b, c, d ∈ R

}
,

the special linear group over R

SL2(R) :=

{(
a b
c d

)
: ad− bc = 1, a, b, c, d ∈ R

}
,

the projective general linear group over R

PGL2(R) := GL2(R)/(R∗ · I),

where R∗ = R \ {0}, and the projective special linear group over R

PSL2(R) := SL2(R)/{I,−I}.

A warning: Contrary to the complex case, we have

PSL2(R) 6∼= PGL2(R).

For GL2(R) has matrices whose determinant is a negative real number. They
cannot be converted to matrices with positive determinant by multiplying by a
nonzero real number, because the real number gets squared in the determinant,
so it doesn’t change the sign of the determinant.

Instead, PSL2(R) is (in a natural way) an index two subgroup of PGL2(R),
and we have a decomposition

PGL2(R) = PSL2(R) ∪ (g · PSL2(R))

where g is the element

g = R∗ ·
(

1 0
0 −1

)
in PGL2(R).

Exercise 22.3 Verify all this.
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We get in a natural way

PSL2(R) ⊆ PGL2(R) ⊆ PSL2(C).

Strictly speaking, these are not subset relations, but natural monomorphisms
induced by subset relations at the matrix level. However, we will write them as
subset relations by identifying the elements with their images.

Exercise 22.4 x

a) Verify that the natural maps PSL2(R)→ PGL2(R)→ PSL2(C) are monomor-
phisms.

b) It seems paradoxical that PGL2(R) ⊆ PSL2(C), yet PGL2(R) 6= PSL2(R).
Isn’t the determinant equal to 1?

§23 Some visuals

Kaleidotile, by Jeff Weeks:

• https:www.geometrygames.org/KaleidoTile
It is downloadable. It can do tilings of hyperbolic space, the plane, and the
sphere.

Interactive hyperbolic tiling in the Poincaré disk, by Malin Christersson:

• https:www.malinc.se/noneuclidean/en/poincaretiling.php
It also has some explanations.

Hyperbolic geometry on Geogebra:

• https:www.geogebra.org/classic/tHvDKWdC

§24 Möb+ and PSL2(C)

Let

A =

(
a b
c d

)
, ad− bc 6= 0

be an element of GL2(C). Define a function

m : GL2(C)→ Möb+, A→ mA,

by defining

mA(z) :=
az + b

cz + d
, z ∈ Ĉ.
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Theorem 24.1 x

(a) m is a homomorphism.

(b) m induces an isomorphism

Möb+ ∼= PGL2(C)).

(c) m|SL2(C) induces an isomorphism

Möb+ ∼= PSL2(C).

Remark: In the future, we will take the liberty of writing

Möb+ = PSL2(C),

instead of just isomorphic, because the isomorphism is natural. It’s just copying
the entries from a matrix to a fractional linear transformation. So we identify
the groups with each other. It is possible to do this in a stable way because the
maps are natural.

Proof x

(a) It suffices to check
mA ◦mB = mAB

for A,B ∈ GL2(C). Let

A =

(
a b
c d

)
, B =

(
e f
g h

)
,

where
ad− bc 6= 0, eh− fg 6= 0.

Then
mA(z) =

az + b

cz + d
, mB(z) =

ez + f

gz + h
.

On the one hand, by the rules of matrix multiplication, we have

AB =

(
a b
c d

)(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
.

On the other hand, we already computed the composition

(mA ◦mB)(z) =
(ae+ bg)z + (af + bh)

(ce+ dg)z + (cf + dh)

(see (18.1)). Comparing these formulas, we see that multiplication of A and B
implements composition of mA and mB . That is,

mA ◦mB = mAB .
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So m is a homomorphism. This proves (a).

(b) To prove the first isomorphism, let us find the kernel of m. First we show

ker(m) ⊆ C∗ · I.

Let

A =

(
a b
c d

)
∈ GL2(C).

Assume A ∈ ker(m). That is, mA = idĈ. Then

mA(z) = z, z ∈ Ĉ.

That is,
az + b

cz + d
= z

for all z ∈ Ĉ. We only need to insert a few values of z to deduce strong
restrictions on a, b, c, d.

Setting z = 0, 1,∞, we get

a · 0 + b

c · 0 + d
= 0,

a · 1 + b

c · 1 + d
= 1,

a · ∞+ b

c · ∞+ d
=∞.

Using one of the special rules in the third case, these yield

b

d
= 0,

a+ b

c+ d
= 1,

a

c
=∞.

We are guaranteed that none of these three has the form 0/0 by the fact that
ad− bc 6= 0.

From b/d = 0 we deduce that d 6= 0, b = 0.

From a/c =∞ we deduce that c = 0 and a 6= 0.

So A has the form

A =

(
a 0
0 d

)
where a, d 6= 0.

Then (a+ b)/(c+ d) = 1 yields a/d = 1, whence A has the form

A =

(
λ 0
0 λ

)
(24.1)

where λ 6= 0. So
ker(m) ⊆ C∗ · I,

as claimed.
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Conversely, every matrix A of the form (77.1) obviously lies in ker(m). So

ker(m) = C∗ · I.

Now, the map
m : GL2(C)→ Möb+

is obviously surjective. So by the First Isomorphism Theorem for groups,

Möb+ ∼= GL2(C)/ ker(m) = GL2(C)/(C∗ · I) =: PGL2(C).

by a natural isomorphism. This proves (b).

(c) The proof for the second isomorphism continues in the same vein. Indeed,
SL2(C) is a subgroup of GL2(C), and

ker(m|SL2(C)) = ker(m) ∩ SL2(C) = (C ∗ ·I) ∩ SL2(C) = {I,−I},

where in the last equality we used the fact that for a diagonal matrix

A =

(
λ 0
0 λ

)
we have

det(A) = 1 ⇐⇒ λ = ±1.

So again, by the First Isomorphism Theorem for groups,

Möb+ ∼= SL2(C)/ ker(m|SL2(C)) = SL2(C)/{I,−I} =: PSL2(C).

This proves (b).

2

Remark 1. Note that this proves (a bit indirectly) that

PGL2(C) = PSL2(C)

which was an exercise in the last section (with a more straightforward proof).

Remark 2. Let us compute the inverse of f(z) = mA by computing the inverse
of the matrix A. Namely, we have by the standard inversion formula for a 2× 2
matrix,

A−1 =

(
d −b
−c a

)
ad− bc

=

(
d/(ad− bc) −b/(ad− bc)
−c/(ad− bc) a/(ad− bc)

)
.

Then
f−1(z) = m−1A (z) = mA−1(z),
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so
f−1(z) =

(d/(ad− bc))z − b/(ad− bc))
(−c/(ad− bc))z + (a/(ad− bc))

=
dz − b
−cz + a

which is the formula we got previously. The denominators ad− bc cancel when
we convert the matrix A−1 into a Möbius transformation.

Remark 3. The representation as matrices works only for orientation-preserving
Möbius transformations.

Summary

We have shown

Möb+ ∼= PSL2(C).

This expresses, in symbolic form, the ambiguity in choosing a matrix A to
represent f .

To recap, we can think of it as proceeding in two steps. In order to reduce the
ambiguity, we first normalize by requiring

ad− bc = 1.

This can be accomplished by dividing the matrix by a suitable complex number
µ, namely

µ = ±
√
ad− bc (6= 0)

where by ± we mean the two branches of the complex square root function.
This lands us in SL2(C).

As we have seen, there is still a sign ambiguity. Namely, A and −A have the
same determinant, and if it is 1, they both lie in SL2(C) and represent the same
fractional linear transformation. Taking the quotient to PSL2(C) eliminates
this last ambiguity.

Advanced note

The sign ambiguity SL2(C) → PSL2(C) reminds us of the sign ambiguity for
spinors in physics, and in fact if we take spacetime spinors over Minkowski
space R3,1, it is identical to it. That is, SL2(C) ∼= Spin0(3, 1), and PSL2(C) ∼=
SO0(3, 1), the identity component of the Lorentz group.

Exercise 24.1 Express the following Möbius transformations as matrices:

identity, translations, rotations, complex affine maps, complex inverse.
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Chapter 9

Generators of Möb+ and of
Möb

§25 Nomenclature

Define the following transformations.

1) Multiplication by a:
Ma : z → az z ∈ Ĉ

where a 6= 0 ∈ C.

2) Translation by b:
Tb : z → z + b z ∈ Ĉ

where b ∈ C.

3) Recall also the involutions

N : z → 1/z, S : z → 1

z̄
, C : z → z̄.

Some exercises

Try to do exercises 4) and 6) by geometry before you translate them to Möbius
transformations (which makes everything algebra).

4) Define reflection through a point p:

Qp : z → z′ z ∈ Ĉ

where p ∈ C, and z′ is the point lying on the opposite side of p from z, but at
the same distance from p as z.
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Exercise 25.1 x

a) Show R2
p = id.

b) What is Rq ◦Rq?
c) Express Rp as a Möbius transformation.

5) Define reflection across a line L:

SL : z → z′′ z ∈ Ĉ

where L is a line in C, and z′′ is the point lying on the opposite side of L from
z, but at the same distance from L as z.

One example of reflection across a line is complex conjugation C. Here are some
others.

Exercise 25.2 x

a) Show that z 7→ eiφz̄ is the most general reflection across a line through 0.
b) What line does it reflect across?

6) Here is an exercise with translations and dilations.

Exercise 25.3 Let b ∈ C, λ > 0.

a) Describe the effect of Tb ◦Mλ ◦ T−b geometrically.
b) Describe the effect of Mλ ◦ Ta ◦M1/λ geometrically.
c) Express the transformations of a) and b) as Möbius transformations.

§26 Generators of Möb+ and Möb

In the above notation, the group Aff(C) of complex affine transformations is
generated by Ma, Tb, where a 6= 0 ∈ C, b ∈ C. (See §8)

Theorem 26.1 x

(a) Möb+ is generated by the maps

Ma, Tb, N,

where a 6= 0 ∈ C, b ∈ C, and N is the complex inverse 1/z.

(b) Möb is generated by the maps

Ma, Tb, N, C,

where C is complex conjugation.
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Note that we get from the affine group Aff(C) = 〈Ma, Tb〉 to Möb+ by adding a
single involution N , and we get from Möb+ to Möb by adding another involution
C. (Here 〈g, h, . . .〉 denotes the group generated by g, h, . . .)

Exercise 26.1 Prove or disprove: Möb+ is a semidirect product of Aff(C) and
〈C〉 ∼= Z2.

Remark: There are many other factorizations or generating sets for SL2(C)
and the Möbius group besides these. Polar decompositions and singular value
decompositions spring to mind.

Proof x

Let
f(z) =

az + b

cz + d
, ad− bc 6= 0.

Case 1. Suppose c = 0. Then a 6= 0, d 6= 0. Compute

f(z) =
az + b

d
=
a

d
z +

b

d
,

a complex affine transformation. So

f = Tb/d ◦Ma/d.

Both factors are bijections because d 6= 0 and a/d 6= 0.

Case 2. Suppose c 6= 0. Then

f(z) =
az + b

cz + d

=
a

c

cz + d

cz + d
− a

c

cz + d

cz + d
+
az + b

cz + d

=
a

c
+
−ad/c+ b

cz + d

=
a

c
+
bc− ad

c

1

cz + d

=
a

c
+
bc− ad
c2

1

z + d/c
.

So in this case,

f = Ta/c ◦M(bc−ad)/c2 ◦ I ◦ Td/c,

if c 6= 0. Note that all the factors are bijections because ad− bc 6= 0 and c 6= 0.
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Putting together the two boxed equations, we have proven (a).

4. If we adjoin complex conjugation to the generators of Möb+, then we generate
Möb. This proves (b).

Let us give some more detail. Suppose

f(z) =
az̄ + b

cz̄ + d
, ad− bc 6= 0.

Then we may factor f as

f = Tb/d ◦Ma/d ◦ C,

if c = 0, and

f = Tb/d ◦M(bc−ad)/c2 ◦ I ◦ Td/c ◦ C.

if c 6= 0.

2
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Chapter 10

Operations on S2

§27 Transferring operations from Ĉ to S2

A Möbius transformation f acts on Ĉ by

f : Ĉ→ Ĉ.

But Ĉ is identified with the Riemann sphere S2 via stereographic projection σ.
So we can transfer the action of f to S2 by conjugating by σ, namely

f̃ := σ−1 ◦ f ◦ σ : S2 → S2.

We get a diagram

Ĉ Ĉ

S2 S2

f

f̃

σ σ

Figure 27.1: Transferring f to S2.

that defines f̃ . All maps are bijections. We say the diagram commutes because
f ◦ σ = σ ◦ f̃ .
We will use the tilde (Schlange) when we want to distinguish the two f maps,
but often drop it otherwise.

Recall that in R3, we use the variables a, b, c. We have a = x, b = y, and the
c-axis goes throuch S, 0, N .
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§28 Types of Möbius transformation

In this section, we describe the action of certain Möbius transformations on the
Riemann sphere S2. Here they are in pictures:

Figure 28.1: Four types of transformation (Needham, Visual Complex Analysis)

There are four types (excluding the identity map),

elliptic, hyperbolic, loxodromic, parabolic.

In this section, we give an example of each type. In the next section, we define
each type as any transformation that is conjugate to the fundamental example.

How do we get the pictures?

28.1 Elliptic

Let

f(z) = eiθz

be a rotation of Ĉ by θ.

f is the fundamental example of an elliptic transformation. Let us look at the
action of f̃ on S2.
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Figure 28.2: An elliptic transformation (Needham, Visual Complex Analysis)

f̃ has two fixed points. It is a rotation of S2 by θ about the vertical axis.

There are also elliptic transformations (conjugate to this one) where the fixed
points are not antipodal to each other.

28.2 Hyperbolic

Let
f(z) = λz

be a dilation of Ĉ by λ, λ > 0.

f is the fundamental example of an hyperbolic transformation. And f̃ is an
interesting new operation on S2.

Figure 28.3: A hyperbolic transformation (Needham, Visual Complex Analysis)

f̃ fixes each of the the poles, and moves points along great-circle trajectories
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from one pole to the other.

There are also hyperbolic transformations (conjugate to this one) where the
fixed points are not antipodal to each other. (See Exercise 29.2.)

Note that f̃ is a mapping, not a flow or vector field. The continuous trajectories
are only there for guidance. Under f̃ , each point z hops a certain distance along
a trajectory, and that is the point f(z).

28.3 Loxodromic

Let
f(z) = az

be multiplication by a, a 6= 0. So f is a rotation-dilation of Ĉ by a = λeiθ,
λ > 0.

f is the fundamental example of an loxodromic transformation. And f̃ is another
interesting new operation on S2.

Figure 28.4: A loxodromic transformation (Needham, Visual Complex Analysis)

f̃ fixes each pole, and in general, moves the points of S2 along spiral trajectories
from one pole to the other.

It is like a globular barber-shop pole. The spirals circle each pole infinitely
often.

If we take λ = 1, it neutralizes the dilation effect and we get elliptic.

If we take eiθ = 1, it neutralizes the rotation effect and we get hyperbolic.

There are also loxodromic transformations (conjugate to this one) where the
fixed points are not antipodal to each other.

Note that all of the above examples have precisely two fixed points in S2. In
addition to these three types, we have:
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28.4 Parabolic

These are the strangest. Fix b ∈ C. Let

f(z) = z + b

be translation by b.

Figure 28.5: A translation of C

f is the fundamental example of an parabolic transformation. Let us look at the
action of f̃ on S2.

Figure 28.6: A parabolic transformation (Needham, Visual Complex Analysis)

f̃ has just one fixed point, namely the north pole. Near N , f̃ has an unusual
pattern of movement. It looks like the field lines of an electric dipole.1

There is a family of circles tangent to one another at N . Each circle is a
trajectory starting and ending at N . f̃ moves points along each trajectory.

It is difficult to visualize why this comes from z 7→ z + b.
1Indeed, when transferred to R2 as in Exercise 28.1, they are exactly the field lines of a

2-D dipole, with a log(r) potential.
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Exercise 28.1 Let Tb(z) = z+ b. To study the pattern of movement of T̃b near
N , let us move N to a finite point in C.

(a) By conjugating Tb(z) = z+ b by S(z) = 1/z̄, convert Tb to a transformation
Ub of C that has its unique fixed point at z = 0.

(b) Fix z 6= 0. Restrict t to R. Show that as t varies, the trajectory t 7→ Ut(z)
traces out a circle that contains 0. (Hint: It is easiest to calculate this if z is
taken to be pure imaginary.)

(c) What axis are these circles tangent to? Draw the circles.

There is a more complete discussion in §59. (Among other things, we solve this
problem there.)

28.5 Orientation-reversing

There are several distinct types of orientation-reversing Möbius transformations,
but I won’t list them here.

§29 Classification of orientation-preserving Möbius
transformations

Here is the formal definition.

Definition 29.1 We call an orientation-preserving Möbius transformation f 6=
id

a) Elliptic if it is conjugate to a rotation Meiθ , θ ∈ R.
b) Hyperbolic if it is conjugate to a dilation Mλ, λ > 0.
c) Loxodromic if it is conjugate to a rotation-dilation Ma, a ∈ C, a 6= 0.
d) Parabolic if it is conjugate to a translation Tb, b ∈ C, b 6= 0.

The identity map would be a degenerate case of all four, but it is excluded.

The reader might wonder: Are these classes mutually exclusive? Are they
exhaustive?

Concerning exclusive, one has

Theorem 29.2 x

(a) Elliptic and hyperbolic are special cases of loxodromic.

(b) Loxodromic and parabolic transformations are mutually exclusive.

(c) Elliptic and hyperbolic transformations are mutually exclusive.
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Exercise 29.1 Prove the theorem.

(a) Obvious.

(b) Hint: Look at the fixed-point set.

(c) Hint: Look at the iterates of the transformation.

Concerning exhaustive, one has1

Every orientation-preserving Möbius transformation
is conjugate to one of the above examples

Putting together the exercise with the box, we see that the classes are exhaus-
tive, and are related as follows:

ELLIPTIC ⊆ LOXODROMIC ⊇ HYPERBOLIC

PARABOLIC

Figure 29.1: Classification

Exercises

We can conjugate M̃λ to get another hyperbolic transformation, whose two fixed
points are not polar opposites of each other.

IMAGE: Conjugating a hyperbolic transformation

Exercise 29.2 x

(a) Let f be a transformation with fixed points P , Q in S2. Let g be any other
transformation. What are the fixed points of h = gfg−1?

(b) Let Mλ(z) = λz, λ > 0, be the “model” hyperbolic transformation discussed
above.

Can you think of a way to conjugate Mλ so that the new transformation h fixes
any two arbitrary points on the unit sphere?

c) Try to draw the effect of h on S2.

Exercise 29.3 x

(a) Can you conjugate Mλ, λ > 0, to obtain a hyperbolic transformation that
fixes 1 and −1? The result should look like Figure 12.1.

1Proof in a future edition.
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(b) Can you conjugate Rθ, θ ∈ R, to get an elliptic transformation that looks
like Figure 12.2?

See Serie 3, Exercise 2(c), and the second subsection of §34 (“A variant of the
Cayley transformation”).

Here is some more conjugation.

Exercise 29.4 Show that all parabolic translations Tb, b 6= 0, are conjugate.

Finally a bit of classification.

Exercise 29.5 x

(a) Draw the effect of z 7→ 2z−3 on the Riemann sphere. Is it elliptic, hyperbolic,
loxodromic, or parabolic?

(b) Consider a general affine transformation z 7→ az+b, a, b ∈ C, a 6= 0. Classify
it as elliptic, hyperbolic, loxodromic, or parabolic. (Hint: To get started, look at
the fixed points)
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Chapter 11

The Cayley transformation

§30 The upper half-plane and the unit disk

Define the upper half-plane by

H+ := {z ∈ C : Im(z) > 0}.

We also have the unit disk

B1 = {z ∈ C : |z| < 1}.

Later we will see that each of these domains carries a model for the hyper-
bolic plane, the Poincaré upper half-plane model and the Poincaré disk model,
respectively.

For this reason, we will study these two domains intensely.

We will find a fractional linear transformation that maps bijectively between
the two. Indeed, there are many such transformations, but we pick out one –
the Cayley transformation.

The Cayley transformation is biholomorphic (bijective and holomorphic in both
directions). It shows that H+ and B1 are “the same” from a complex-variable
point of view.

Indeed, by the Riemann mapping theorem, all simply connected open sets in C
(except C itself) are biholomorphically equivalent. But not usually by Möbius
transformations.

Here are the images of H+ and B1 in the Riemann sphere. Note that the
unit disk becomes the southern hemisphere {c < 0}, and the upper half-plane
becomes the “western” hemisphere {b > 0}.
IMAGE: Southern and western hemispheres
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§31 Restricted Möbius groups

For any subset X of Ĉ, define

Möb(X) := {f ∈ Möb : f(X) = X}

and
Möb+(X) := Möb(X) ∩Möb+.

Recalling that every f in Möb is bijective, we can easily see

Proposition 31.1 Möb(X) and Möb+(X) are groups.

We will be most interested in

Möb(Ĉ) = Möb, Möb(H+), Möb(B1), Möb(C).

Exercise 31.1 Let P , Q be points in the upper half-plane. Show there exists
an orientation-preserving Möbius transformation that preserves H+ and takes
P to Q. That is, Möb(H+) acts transitively on H+.

See also Exercise 33.1. The exercise is solved in Theorem 47.1.

Exercise 31.2 x

a) Find an example where Möb(X ∩ Y ) 6= Möb(X) ∩Möb(Y ).

b) Find an example where Möb(X) = Möb+(X).

§32 The Cayley transformation

The Cayley transformation1 is defined to be

j(z) :=
z − i
z + i

.

Proposition 32.1 The Cayley transformation is a bijection from the upper
half-plane to the unit disk.

During the proof we will observe

j(R̂) = S1, j(∞) = 1, j(i) = 0.

1I previously called this r2.
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Proof x

1. Suppose z is real. Then z − i is the conjugate of z + i, so

|j(z)| =
∣∣∣∣z − iz + i

∣∣∣∣ = 1,

that is, j(z) lies on the unit circle. So j(R) ⊆ S1. By visualizing how z + i and
z − i vary as z ranges over the whole real line, it is clear that

j(R) = S1 \ {1}.

We also have j(∞) = 1. So
j(R̂) = S1.

2. Now R̂ divides Ĉ into two connected open sets, namely the upper half-
plane H+ and the lower half-plane H− = H̄+. Similarly, S1 divides Ĉ into two
connected open sets, the unit disk B1 and its open complement Ĉ \ B̄1.

Since j is a homeomorphism, either

j(H+) = B1 or j(H+) = Ĉ \ B̄1.

But
j(i) = 0

so we get
j(H+) = B1.

So j|H+ : H+ → B1 is a bijection.

2

Here is a picture that shows how the Cayley transformation maps the upper
half-plane to the unit disk.

−→

Figure 32.1: Cayley transformation (KSmrq, Wikipedia, modified)
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The Cayley transformation shows that B1 and H+ are “alike”. more below The
following .... illustrates this.

Role in functional analysis

Besides its role here, an operator version of the Cayley transformation is use-
ful in Hilbert space theory. In this setting, it is called the Cayley tansform.
Specifically, it is used in the operator calculus to reduce the spectral theory of
(unbounded) self-adjoint operators to that of unitary operators. This generalizes
the fact that

j(R) = S1.

The following exercise illustrates this in the finite-dimensional case. Define the
operator norm of a linear map by

‖A‖ := sup
v 6=0

|Av|
|v|

.

Exercise 32.1 Let A : Cn → Cn be a complex-linear map. Prove

a) If ‖A‖ < 1, then A+ iI is invertible. (Hint: Taylor series.)

b) If A+ iI is invertible, then A− iI commutes with (A+ iI)−1.

c) If A is Hermitian, and A+ iI is invertible, then

j(A) := (A− iI)(A+ iI)−1

is unitary. (Hint: Recall that there is a unitary map that diagonalizes A. Or
find an alternate, coordinate-free proof that doesn’t use this.)

For more information, see the Wikipedia articles Cayley transform and Self-
adjoint operator, and Reed and Simon,Methods of Modern Mathematical Physics
I: Functional analysis (a fantastic book).

§33 Isomorphism between Möb(H+) and Möb(B1)

Using the Cayley transform, we show that B1 and H+ have isomorphic Möbius
groups.

Theorem 33.1 x

We have
Möb(H+) ∼= Möb(B1).

To be specific, the conjugation map

Cj : Möb+(H+)→ Möb+(B1), f 7→ j ◦ f ◦ j−1

maps Möb(H+) isomorphically to Möb(B1).
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A concrete formula for the isomorphism is given in Proposition 78.1.

The idea is that H+ and B1 “look the same” from the Möbius point of view,
since there is a Möbius bijection between them. So their groups look the same.

Proof x

1. Recall that
j|H+ : H+ −→ B1

is a bijection. Let f be an element of Möb+(H+). Set

h := Cj(f) = j ◦ f ◦ j−1.

Then h(B1) = B1 and h is an element of Möb(B1). So the map

Cj : Möb+(H+)→ Möb+(B1)

is well-defined. Clearly, it is a homomorphism and is injective.

2. Conversely, let h be an element of Möb+(B1). Set

f := C−1j (h) = j−1 ◦ h ◦ j.

Then f(H+) = H+ and f is an element of Möb(H+). So Cj is surjective. So Cj
is an isomorphism.

2

The following exercise is easy. It is solved in Theorem 47.1.

Exercise 33.1 Using j and Exercise 31.1, show that Möb+(B1) acts transi-
tively on B1.

79 Table of Contents



PART II CHAPTER 12. THE OCTAHEDRAL GROUP

Chapter 12

The octahedral group

§34 Cayley-like transformations acting on S2

Consider the three transformations (previously called r2, r1, r3):

j(z) :=
z − i
z + i

Cayley transformation

r1(z) := i
z − i
z + i

variant of Cayley transformation

jR(z) :=
z − 1

z + 1
real Cayley transformation.

Let us study their effect on Ĉ and on the unit sphere.

Theorem 34.1 Each of j, r1, jR is a rotation of the sphere.

We will study each of these transformations, emphasizing

1) Effect on the points i,−1, i,−i, 0,∞
2) Order of the group element

3) Fixed points

4) Action on octants of S2

5) Visualization of the rotation of S2.

We will leave the formal proof of the Theorem to the reader.

As a reference for this section, here are the octants of S2, drawn on Ĉ.
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+++

++--+-

+-+

-++

--+

+-----

Figure 34.1: Octants of S2

Let us now study these transformations in the order r1, jR, j.

A variant of the Cayley transformation

Consider
r1(z) = i

z − i
z + i

, z ∈ Ĉ.

1) Let us start with the action on Ĉ.

Like the Cayley transformation, it maps H+ bijectively to B1. This is clear
because r1 is just

r1 = Mi ◦ j,

where Mi is rotation by +90 degrees.

Now r1 takes
∞ 7→ i 7→ 0 7→ −i 7→ ∞.

So r1 is the answer to Serie 3, Exercise 2(c). A calculation shows that r1 has
order 4.

Evidently r1 fixes the points

r1(−1) = −1, r1(1) = 1.

It takes the extended real axis to the unit circle, and vice versa:

r1(R̂) = S1, r1(S1) = R̂.
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It preserves the extended imaginary axis

ri(îR) = îR

and moves it downward by a “quarter turn”. See Serie 3, Exercise 2(d). The
action of r1 looks roughly like this:

Figure 34.2: Cayley-like transformation (WillowW, Pbroks13, Wikipedia, modified)

To be precise, in the following figure

A

B

C

D

Figure 34.3: Four regions

it takes

Region A −→ Region B −→ Region C −→ Region D −→ Region A.
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This is consistent with having order 4. So the reader can visualize how r1 maps
the upper half-plane to the unit disk. It is a little easier to visualize than the
Cayley transformation.

2) Now let us see what r1 does to S2. We find

In R3, the map r̃1 is given by a −90◦ rotation about the x-axis

It is an isometry of S2. Extended linearly to R3, it is an isometry of R3.

This claim can be proven by substitution into the definition

r̃1 = σ−1 ◦ r1 ◦ σ

using

σ : (a, b, c) 7−→


a+ ib

1− c
P 6= N

∞ P = N

(34.1)

r1 : z 7−→ i
z − i
z + i

, z ∈ C (34.2)

σ−1 : z 7−→


(2x, 2y, |z|2 − 1)

|z|2 + 1
z 6=∞

N z =∞.
(34.3)

The real Cayley transformation

The real Cayley transformation is

jR(z) =
z − 1

z + 1
.

1) First do the effect on Ĉ. jR takes

∞ 7→ 1 7→ 0 7→ −1 7→ ∞.

A calculation shows that jR has order 4.

Evidently jR fixes the points

jR(i) = i, jR(−i) = −i.

It takes the extended imaginary axis to the unit circle, and vice versa:

r1(îR) = S1, r1(S1) = îR.
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It preserves the extended real axis

jR(R̂) = R̂

and moves it leftward by a “quarter turn”. The action of jR looks roughly like
this:

Figure 34.4: Real Cayler transformation (WillowW, Pbroks13, Wikipedia, modified)

To be precise, in the following figure

A'B'C'D'

Figure 34.5: Four regions

it takes

Region A′ −→ Region B′ −→ Region C ′ −→ Region D′ −→ Region A′.

This is consistent with having order 4.

Table of Contents 84



CHAPTER 12. THE OCTAHEDRAL GROUP PART II

In fact, jR looks just like r1, except the action is rotated by 90 degrees.

2) As for the action on S2, one can verify that

In R3, j̃R is a +90◦ rotation about the y-axis

The Cayley transformation

The Cayley transformation is

j(z) =
z − i
z + i

.

1) Let us first do the effect on Ĉ. j takes

i 7→ 0 7→ −1 7→ i, −i 7→ ∞ 7→ 1 7→ −i.

A computation shows that j has order 3.

j fixes the points

z+ =
1

2
(
√

3 + 1)(1− i) and z− =
1

2
(−
√

3 + 1)(1− i).

These fied points were found by solving

z − i
z + i

= z

i.e.

z − i = z2 + iz

from which we obtain the fixed points z+, z− above. The points are situated
across 0 from each other at unequal distances from 0, as shown in the figure.
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●

●

z-

z+

Figure 34.6: Fixed points of the Cayley transformation

2) Now let us study the effect on S2. In R3, the points P+, P− corresponding to
z+, z− are symmetrically placed in the center of the +−+ and −+− octants,
respectively. In fact, they are antipodal points

P+ =
(1,−1, 1)√

3
, P− =

(−1, 1,−1)√
3

.

It turns out that j is a rotation of S2. So the line through P−, 0, P+ must be
its axis. Since j has order 3, it must be a rotation by 120◦. Summarizing,

In R3, j̃ is a 120◦ rotation about the diagonal axis (1,−1,−1)

Exercises

In general, conjugation takes a transformation to one with a similar effect. This
suggests that jR is conjugate to r1.

Exercise 34.1 Express jR in the form

jR = h ◦ r1 ◦ h−1

for a suitable choice of h ∈ Möb.
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§35 The octahedral group

We define the octahedral groups O and Oh.1

Here is a picture of C.

I

VVI

IV

II

III

VIIIVII
0

i

-i

1-1

Figure 35.1: Octants in C

Here is a picture of S2 in R3.

VI V

III

0

i

-i

1-1

∞

IVIII

VIIIVII

Figure 35.2: Octants on S2

Note the six points 1, −1, i, −i, 0, ∞ in both diagrams. We call them the
1So-called Schoenflies notation. See Geometrie, 2020.
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“cardinal points”.

We have labelled the octants of S2 as I, II, ..., V III, and labelled the corre-
sponding regions of C the same way.

In the previous section, we introduced 3 transformations that permute these 6
points, namely

r1 a 90◦ rotation about the x-axis
jR a 90◦ rotation about the y-axis
j a 120◦ rotation about a diagonal axis.

They also permute the eight octants.

Are there more transformations that permute these points?

The proper octahedral group

Let us find the group O of all orientation-preserving Möbius transformations
that permute the 6 cardinal points. Set

X := {1,−1, i,−i, 0,∞}.

Define
O := {f ∈ Möb+ : f(X) = X}.

We have

Proposition 35.1 O is generated by jR, r1, j.1

How does the action look on S2?

Since O is generated by the three rotations given above, it is evident that O
consists of rotations of R3.2

Specifically, O consists of the identity, plus all the 90, 180 and 270 degree ro-
tations about the 3 coordinate axes, plus 180 degree rotations about certain
diagonal axes, plus the 120 and 240 degree rotations about certain other diag-
onal axes.

In fact, one can prove:

Proposition 35.2 O is exactly the orientation-preserving symmetry group of
the regular octahedron with corners 1, −1, i, −i, 0, ∞. O has order 24.

You’ll have to check this yourself.
1Even by any two of them.
2Strictly speaking, each element of O can be extended from a rotation of S2 to a rotation

of R3.
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Figure 35.3: Octahedron (Cyp, Wikipedia)

O is called the proper octahedral group. See Geometrie, 2020 for more details.

The group O is also the orientation-preserving symmetry group of the cube.
The cube is “dual” to the octahedron, so it has the same symmetry group. O is
sometimes called the proper cube group.

Figure 35.4: Octahedron inscribed in a cube and vice-versa. (Knörrer/Brieskorn)

Exercise 35.1 Enumerate the elements of O.

The full octahedral group

If you toss in a reflection of R3, you get an order-48 group which is the group of
all symmetries of the octahedron (both orientation-preserving and orientation-
reversing). It is called the full octahedral group and written Oh.

Oh is also the group of all symmetries of the cube and is sometimes called the
full cube group.

Note that C(z) = z̄ is a reflection of C that becomes a reflection of R3 (across
the ac-plane), whereas the inversion S(z) = 1/z̄ is a nonlinear map of C that
becomes a reflection of R3 (across the ab-plane).
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Each of these permutes the 6 cardinal points, and takes the octahedron to itself
in an orientation-reversing way. So either one can be used on top of jR, r1, j to
generate Oh.

Exercise 35.2 Verify the above.

Finding the isometries of S2 in the Möbius group

Inspried by our success with the octahedral group, it is tempting to believe that
any isometry of S2 (rotation, reflection, or the antipodal map) can be realized
by some Möbius transformation. In fact, this is true.

We have the following. Note that isometries of S2 are the same as isometries of
R3 that fix 0. This in turn is the group O(3) (the 3× 3 orthogonal matrics); its
orientation-preserving subgroup is called SO(3).

Theorem 35.3 The group O(3) can be realized as a subgroup of Möb that acts
on the Riemann sphere by isometries.

This seems fairly obvious, but a proof might be time-consuming.
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Chapter 13

Clines

§36 Clines

By definition, an extended line in Ĉ is a line L in C together with the point ∞.
Write L̂ for the extended line determined by L.

Definition 36.1 A cline, or generalized circle, is a circle or extended line.

The idea is that as a suitable sequence of circles gets larger and larger, it con-
verges to a line, plus the point ∞. To make the set of circles complete, we need
to include the extended lines.

Here is a first elementary fact about clines. Just as two distinct points determine
a line in Euclidean geometry, we have the following fact for clines.

Proposition 36.2 Through every three distinct points in Ĉ runs a unique cline.

That is, clines are like lines, but there are a lot more of them, so it requires
three points to determine a cline. Two points would not be enough.

Proof x

Let z1, z2, z3 be distinct. We seek a cline C through them.

Case 1: One of the points is ∞.

Then C is the unique extended line through the other two points.

Case 2: The points are finite and collinear.

Then C is the unique extended line through all three points.

Case 3: The points are finite, and not collinear.
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Then the points z1, z2, z3 form a triangle. Let L1, L2, and L3 be the perpendic-
ular bisectors of the three sides. By a classic theorem of geometry, they meet at
a common point. This is the center of a circle C that passes through z1, z2, z3.

2

IMAGE: Construct the center by intersecting bisectors
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Chapter 14

Clines correspond to circles

§37 Clines correspond to circles under stereographic
projection

Theorem 37.1 Under stereographic projection, clines in Ĉ correspond to cir-
cles in S2.

Figure 37.1: Circles go to clines (Delman-Galperin, 2003)

Since all circles in S2 are alike, the Theorem shows that the two kinds of cline
in Ĉ are really one unified concept.

We will give a geometric proof of the Theorem in §38 - §41. Our discussion is
inspired by Hilbert-Cohn-Vossen, §36.

A computational proof using (10.1) and (10.2) is short, but the geometric proof
is nicer.

We can use Theorem 37.1 to give an alternate proof of Proposition 36.2:
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Exercise 37.1 Prove that there exists a unique cline through any three distinct
points by working in S2 and transferring the result to Ĉ.

Note that this proof of Proposition 36.2 is simpler than the previous proof,
because we don’t have to do three different cases.

§38 Double angle theorem

The following theorem is sometimes proven in high school geometry.

Theorem 38.1 (Double angle theorem) Let γ be an arc of a circle. The
angle subtended by γ at the center of the circle is double the angle subtended by
γ at a point P on the circle but not on γ.

α

2α

P

γ

Figure 38.1: Double angle

Note that this implies that the angle subtended at P is independent of P , as
shown:

α

α

P

P'

Figure 38.2: The angle is independent of Y .

Proof The lemma holds for any proper arc, but we will do the case where γ is
less than a semicircle. We let the pictures speak for themselves.
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α α1

1
1

α1

1
1

γ

γ

α+γ

αγ

γ

α+γ

αγ

γ

α+γ

π-2α-2γ

α
γ

γ

α+γ

π-2γ

α
γ

γ

α+γ2α

α

2α

2
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§39 Equal angle lemma

Let us prove a key lemma about stereographic projection.

Let P be a point of S2 not equal to N . Let L be the line through N and P . L
intersects C at σ(P ).

Figure 39.1: Stereographic projection (Hilbert-Cohn-Vossen)

Let TNS2 be the plane tangent to S2 at N , and TPS2 be the plane tangent to
S2 at P , as shown:

T S

T S

N
2

P
2

Figure 39.2: The tangent planes at P and N (Hilbert-Cohn-Vossen)

Let O designate the origin. Let w be the plane determined by O, N , P . Note
that w also contains L and σ(P ). Here is a picture within w:
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N

σ(P)

P

T S

ℂ

T SP
2

N
2

L

Figure 39.3: Objects in the plane w

Lemma 39.1 (Equal angle lemma) L meets TPS2 and C at the same angle,
and the angles are realized in the plane w.

Here is a picture of the equal angles:

N

σ(P)

P

T S

ℂ

T SP
2

N
2

α
α L

Figure 39.4: Equal angles

Proof x

Consider the three planes

TPS
2, TNS

2, C. (39.1)

Each of these planes is orthogonal to w. Therefore, for each of these planes,
the angle between L and the plane is realized by the angle between L and the
intersection of the plane with w. This is the second claim.

Now let us prove the angles are equal. By considering the isoceles triangle NOP ,
one sees that the line L makes the same angle with TPS2 and TNS2.
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N

σ(P)

P

α
αα

α

α

Figure 39.5: Equal angles

Since TNS2 and C are parallel, L makes the same angle with TPS2 and C. This
establishes the first claim.

This proves the Lemma.

2

§40 Cones in R3

We will review a few facts about cones and conic sections in R3, without proof.

Geometrically, a cone can be formed as follows.

Select a plane p and a point Z not on p. Let A be the line through Z perpen-
dicular to p. Let X be the foot of the perpendicular. Select a circle or ellipse S
in p with center X.

●

●

p

A

X

Z

S

Figure 40.1: A point Z not on p

Let K be the union of all lines that pass through Z and some point of S.
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●

p

Z●

S

K

A

Figure 40.2: The cone K

Then K is called a cone. Z is called the vertex. A is called the axis. S is called
the (orthogonal) generator.

If S is a circle, K is called a circular cone. If S is an ellipse, then K is called
an elliptical cone.

A cone has two lobes, separated by the vertex Z.

In the Figure below, we see that a cone has three orthogonal planes u, v, w of
reflective symmetry (more if K is circular).

Z●

K

u

v

w

A

Figure 40.3: The cone K
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The symmetry planes are

u = plane through Z parallel to p

v = plane containing the axis A and the major axis of S
w = plane containing the axis A and the minor axis of S.

If S is a circle, any plane containing A is a plane of symmetry, and v and w
may be chosen to be any two orthogonal planes containing A.

Note that the vertex and axis depend only on K, because they can be charac-
terized in terms of the planes of symmetry of K.

If we make u, v, w the coordinate planes for an orthogonal coordinate system,
then K will be the solution set of the equation

M2a2 +N2b2 = c2

for some M,N > 0.

Oblique construction of cones

Cones are quite robust in the following sense.

Theorem 40.1 (Oblique construction of a cone) Let q be a plane, S a cir-
cle or ellipse in q, and Z any point not in q. Let K be the union of the lines
that pass through Z and some point of S. Then K is a cone.

This construction is called oblique, because the axis of the cone so constructed
need not be perpendicular to the given plane q. S is called the (oblique) gener-
ator of K.

q

Z ●

S

K

Figure 40.4: Oblique construction of a cone
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The point of the Theorem is that even though K was constructed obliquely, it
can also be constructed in the orthogonal way presented at the beginning of the
section. So K has an axis, an orthogonal generator, and symmetry planes, even
though these aren’t obvious in the oblique construction.

●

q

Z ●

S

K

A

Figure 40.5: Finding the axis and an orthogonal generator (in green)

Note that in the oblique case, a circle may give rise to an elliptical cone and an
ellipse may give rise to a circular cone.

The following theorem says that we can do this process in reverse, that is, any
planar section of a cone is a circle or an ellipse.

Theorem 40.2 (Oblique slices of a cone) Let K be a cone, and p a plane
not containing the vertex. Suppose the slice K ∩ p is compact. Then K ∩ p is a
circle or ellipse.

§41 Proof of the Theorem

Theorem 41.1 Under stereographic projection, circles in S2 map to clines in
Ĉ.

There are two cases:

(a) Circles in S2 that pass through N map to extended lines in Ĉ.

(b) Circles in S2 that don’t pass through N map to circles in C.

The two cases can be seen in the figure below.
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Figure 41.1: Circles go to clines (Delman-Galperin, 2003)

Proof x

Let C be a circle in S2.

Case (a)

Assume that C passes through N . This is the easy case.

Let T be the plane in R3 containing C. Then

C = T ∩ S2.

Then T contains N , and T is the union of all the lines L in T that pass through
N .

T

C

N●

Figure 41.2: T is the union of the lines through N in T

Each such line L, except the horizontal one, passes through one point P of C
and one point Q of C = R2 × {0}. By the definition of σ,

Q = σ(P ).
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T

C

N

ℂM

●

●

●

P

Q

Figure 41.3: A circle through N , and the plane T

The points Q = σ(P ) of this type make up a line

M := T ∩ C

in C. So σ takes C \ {N} to M .

The remaining line L is horizontal. It is the line in T though N that is parallel
to C. It is tangent to S2 at N . Corresponding to this line, we have

σ(N) =∞.

Putting it all together:

σ takes C to the extended line M̂ = M ∪{∞}.

Case (b)

Assume that C doesn’t pass through N . This case is harder. It takes several
steps.

1. As before, we can visualize σ(C) by drawing all the lines that pass through
N and an arbitrary point in C. Collectively, these lines meet C in σ(C).

Let K be the union of these lines. Since C is a circle, K is a cone with vertex
N .
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K
C

N

ℂ

●

σ(C)

Figure 41.4: A circle not through N , and the cone K

Then
σ(C) = K ∩ C.

So σ(C) is a conic section.

Since C does not pass through N , σ(C) lies wholly within C and is compact.
So by Theorem 40.2, σ(C) is a circle or an ellipse. We aim to prove that it is a
circle, like C.

2. What does K look like?

Visually, it is not obvious from Figure 41.4 whether K is a circular cone or an
elliptic cone. But since C is a circle and the plane of C is not perpendicular to
the axis of K in general, K is surely an elliptic cone in general.

And it is totally not obvious whether K ∩ C is a circle or an ellipse.

3. We would like to reduce the proof to a problem in a plane.

To do this, we will find one symmetry plane of K.

Let X be the geometric center of the circle C (it does not lie on the sphere).
Let w be the plane determined by O, N , and X.

circle C
O

N

X ●

●

●

S 2

𝕔
Figure 41.5: The plane w

Note that we are using the version of stereographic projection where C is tangent
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to S2 at the south pole. That does not affect the proof, it just scales everything
by 2 in C.

Let p be the plane containing C. Then w is perpendicular to p. Also w is
perpendicular to C.

Reflection in w takes p to p, and fixes X, so it takes C to C. It also takes N to
N .

Since K is formed from N and C, the reflection in w takes K to K. So w is one
of the symmetry planes of K.

Reflection in w also takes S2 to S2 and C to C.

4. Next let us consider the image σ(C) = K ∩ C of C in C.

C

Image of C

Figure 41.6: The circle C and its image σ(C)

Since σ(C) = K ∩C is formed from K and C, the reflection in w takes σ(C) to
σ(C).

So w contains one axis (major or minor) of σ(C), and is perpendicular to the
other axis of σ(C). (If the axes are not well-defined, then σ(C) is a circle, and
we are done.)

In the figure, we drew only the cross-sections of C and its image σ(C), that is,
a diameter of C and an axis of σ(C).

So w a symmetry plane of everything in the problem.

This means we can reduce everything to finding various angles and intersections
in the plane w.

5. So let’s draw some pictures in w.

First of all, there are two lines L1, L2 where the plane w meets the cone K.
These lines pass through N , through the two points where C meets w, and
through the two points where σ(C) meets w.
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L

L1

2

C

σ(C)

Let us draw the axis A of the cone. It lies in the symmetry plane w, and it is
the angle bisector of L1 and L2. Call the two equal angles α. The axis A meets
the sphere in a point P .

α α

Axis

P●

In the picture, we highlight the points P1 = L1 ∩ S2, P2 = L2 ∩ S2, and
P = A ∩ S2.

α α

P●
●

●

How are these 
three points 
related?

P

P1

2

The question is, how do these three points relate to each other? We claim:

1) The tangent plane to S2 at P is parallel to the plane p that contains C.
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Since both of these planes are perpendicular to w, this claim reduces to the
following claim in u:

2) The tangent line to S2 ∩w at P is parallel to the line through P1 and P2.

In order to prove this, we draw green segments from O to P1, P , and P2:

α α

●

●

●

●

P

1

2

P

P
O

Next we apply the Double-Angle Theorem to deduce that the arc P1P ubtends
double the angle at O that it subtends at N . Similarly for the arc PP2. It
follows that the two central angles ∠P1OP and ∠POP2 both equal to 2α:

α α

2α
2α

Apply the 
2α theorem

P

P

P1

2

O

So the triangle P1OP2 is isoceles and the two triangles P1OX and XOP2 are
congruent:

2α
2α

O

P

X 

1

2P
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From this it follows that the tangent line to S2 ∩ w at P is parallel to the line
through P1 and P2. Therefore, as claimed,

The tangent plane to S2 at P is parallel to the plane p that contains C

2α
2α

P

T S

p

P
2

Here is the full picture again. Since p and TPS2 are parallel, we find that they
make the same angle ε with the line L through N and P . Furthermore, these
angles are realized in the plane w.

α α

2α
2α ε

ε
same angle

P

A

But recall Lemma 39.1, the Equal Angle Lemma, which implies that the line A
makes the same angle with TPS2 as it makes with C, and that these angles are
realized in w. We obtain the following:
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α α

ε

2α
2α ε

ε

all three 
angles are 
the same

P

A

Therefore, A makes the same angle with the plane p containing C as A make
with C:

ε

ε
C

σ(C)

The angles ε 
are the same

Axis of cone

A

Now, consider dilating space about the point N by some factor λ. This action
preserves the cone K, and shrinks everything toward N (or expands it about
N) in a uniform way, without changing shapes.

By choosing a suitable dilation factor λ, we can dilate C about N to a parallel
plane p′ that passes through the center X of C.

σ(C)

Axis of cone

ε ε

ε

C

p

ℂ

  C' p'
X
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Then the dilation slides σ(C) along K, as if on tracks, and scales it to a figure
C ′ in p′. Then

C ′ has the same shape as σ(C)

and

C ′ = K ∩ p′.

Next, let v be the plane containing the axis A and perpendicular to w. In the
following diagram, v is marked in green, but actually v juts out of the paper
toward the reader. It is a symmetry plane of K.

ε ε

ε

p

ℂ

p'

v

Figure 41.7: Location of the plane v

The plane v contains the intersection p ∩ p′. All three planes

v, p, p′

are perpendicular to w. Now, recall that p and p′ make the same angle ε with
L. It follows that they make the same angle ε with v. Therefore

Reflection in v exchanges p and p′

But reflection in v also takes K to K. So

Reflection in v exchanges C = K ∩ p and C ′ = K ∩ p′
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C

σ(C)

Axis of cone

C'

C and C' are 
congruent

εε

ε

So C ′ is congruent to C. So C ′ is a circle. But C ′ has the same shape as σ(C).
So σ(C) is a circle. So circles in S2 that don’t pass through N go to circles in
C.

This completes case (b), and completes the proof of the Theorem.

2
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Chapter 15

Inversion in the unit circle

§42 Inversion in the unit circle

We continue the discussion from §14. Recall inversion in the unit circle

S(z) =
1

z̄
=

z

|z|2
.

Let us check the geometry. Note S(0) :=∞, S(∞) := 0. For z 6= 0,∞, S(z) is
a positive multiple of z, so z and S(z) are finite numbers lying on the same ray
emerging from 0. We have

|S(z)| = 1

|z|
,

so their lengths are inverses.

●

●
z

S(z)

Figure 42.1: Inversion in S1

The function S “flips” points inside S1 to the outside, and points outside to the
inside. It fixes each point of S1.
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Exercise 42.1 Does inversion in S1 take centers of circles to centers of circles?

§43 Composing north and south stereographic pro-
jection

Recall that σ is stereographic projection (from the north pole) and σ′ is stere-
ographic projection from the south pole. We will show

Lemma 43.1 σ′ ◦ σ−1 = S.

Proof Consider the figure. It shows

z, P = σ−1(z), z′ = σ′(P ) = σ′(σ−1(z)).

O
● ● ●

S

N

●

●

z α

α

P

z'
●

Figure 43.1: Composing stereographic projections

The line NzP is orthogonal to the line SPz′. So

∠ONz = ∠Oz′S.

This angle is indicated by α in the figure. Now the triangles ONz and Oz′S are
both right triangles. So they are similar. So

|zO|
|ON |

=
|SO|
|Oz′|

.

That is,
|z|
1

=
1

|z′|
.

i.e.
|z′| = 1

|z|
.
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Since z′ also lie on the same ray emerging from O, it follows that

z′ = S(z).

So
S(z) = z′ = σ′(σ−1(z)).

2

§44 Inversion in the unit circle yields a reflection
of S2

As promised, we prove Proposition 14.1. We will use this in the next section.

Proposition 44.1 S̃ is the reflection of S2 across the ab-plane.

This is interesting because a nonlinear operation on C becomes an easy-to-
understand linear operation on R3.

●

●

S

N

●

●

P
σ'(P)

●

σ  (σ'(P))  -1

Figure 44.1: Composing the other way

Proof x

From the Figure, we see that

σ−1 ◦ σ′ = reflection in the ab-plane.

But from Lemma 43.1, σ′ = S ◦ σ, so

S̃ = σ−1 ◦ S ◦ σ = σ−1 ◦ σ′ = reflection in the ab-plane.

2
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Chapter 16

Möbius transformations
preserve clines

§45 Inversion in the unit circle takes clines to
clines

Theorem 45.1 Inversion in the unit circle takes clines to clines.

Proof We have by definition,

S = σ ◦ S̃ ◦ σ−1

By the previous section,

S̃ = reflection in the ab-plane.

Now σ−1 takes clines to circles. And S̃ takes circles to circles. And σ takes
circles to clines. So S takes clines to clines.

2

In more detail, we can see that inversion takes

Lines through the origin ←→ lines through the origin

Lines not through the origin ←→ circles through the origin

Circles not through the origin −→ circles not through the origin.

IMAGE: Effect of inversion in S1
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Alternative proof

The theorem can also be proven by pure calculation. This is actually quicker,
since it doesn’t require all the buildup with stereographic projection. But it is
less geometric.

Here is a sketch. A circle is the solution of

|z − a|2 = R2 (45.1)

where a ∈ C, R > 0. A line is the solution of

Re(az) = t (45.2)

where a ∈ C, a 6= 0, t ∈ R.

After expressing these equations in terms of real variables via z = x+iy, the first
equation is seen to be quadratic, and the second equation is linear (degenerate
quadratic).

The image under S of a circle solves∣∣∣∣1z̄ − a
∣∣∣∣2 = R2.

The image under S of a line solves

Re
(a
z̄

)
= t.

After clearing fractions, each of these last two equations becomes quadratic or
linear in the form (45.1) or (45.2), albeit with different coefficients. Also, they
can switch type.

So from circles and lines we get circles and lines. However, some circles turn
into lines and vice versa.

Exercise 45.1 Calculate all this.

§46 Möbius transformations preserve clines

We are ready for an important theorem.

Theorem 46.1 Möbius transformations take clines to clines.

This result makes the geometry of Möbius transformations very transparent.

Proof x
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By Theorem 26.1, the Möbius transformations are generated by

Ta,Ma, N,C.

But N = C ◦ S, so the Möbius transformations are generated by

Ta,Ma, C, S.

It is obvious that Ta, Ma, and C preserve clines. By Theorem 45.1, S preserves
clines. So all Möbius transformations preserve clines.

2

The view on the S2 side is even simpler.

Corollary 46.2 Acting on S2, Möbius transformations take circles to circles.

Proof x

Acting on Ĉ, Möbius transformations take clines to clines. But clines in Ĉ
correspond to circles in S2 via stereographic projection (Theorem 37.1). So
acting on S2, Möbius transformations take circles to circles.

2
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Chapter 17

Transitivity on points and
clines

§47 Transitivity on H+ and on B1

Recall that a group G acts transitively on a set X if for every x, y ∈ X, there
exists an element g ∈ G such that g · x = y.

We proved previously (Theorem 20.1) that Möb+ acts transitively on S2. In
this section, we prove that Möb+ acts transitively on H+ and on B1, as such.

(The Theorem is the solution of Exercises 31.1 and 33.1.)

Theorem 47.1 x

a) Möb+(H+) acts transitively on H+.

b) Möb+(B1) acts transitively on B1.

IMAGE: Transitivity on H+; transitivity on B1

This Theorem illustrates the flexible nature of Möbius geometry. In metric
geometry, if an isometry takes a disk to itself, it can move a point within the
disk only in limited ways, because distances must be preserved.

Effectively, the Theorem works because Möb(H+) contains the similarity group
of H+, and because B1 is equivalent to H+.

Proof x

a) Let z, w be points in H+. Consider a real affine transformation

f(z) = λz + µ,
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where µ > 0, λ ∈ R. Clearly f ∈ Möb+(H+). But it is obvious that we can
choose f so that f(z) = w. Namely, scale z by λ until it has the same y-
coordinate as w, then translate by µ until they coincide. In algebraic terms, we
solve

w = λz + µ

by writing w = u+ iv, z = x+ iy and getting the equivalent equations

u = λx+ µ, v = λy

with solutions
λ =

v

y
, µ = u− v

y
x.

b) The transitivity of Möb+(B1) on B1 follows immediate by conjugating by j.

Namely, let z, w be points of B1. Select f in Möb+(H+) such that

f : j−1(z) 7→ j−1(w).

Define h := j ◦ f ◦ j−1. The h is in Möb+(B1) and

h : z 7→ w.

2

§48 Transitivity on clines

The basic objects in Möbius geometry are points and clines. We have seen
that Möb+ acts transitively on points. The following Theorem says that it acts
transitively on clines as well.

Proposition 48.1 Let E, F be any two clines. Then there is an orientation-
preserving Möbius transformation such that

f(E) = F.

IMAGE: Transitivity on clines

The Theorem implies that all clines are alike, from the Möbius point of view.
It gives a second, more precise reason, besides Theorem 37.1, to view clines as
one unified concept.

The Theorem shows how Möbius geometry disrespects scales. By contrast, in
metric geometry, circles of different sizes are not equivalent.

Proof x

It is clear that any circle in C can be taken to any other circle in C by an affine
transformation. Similarly, any extended line in C can be taken to any other
extended line. But inversion in S1 exchanges circles through the origin with
extended lines. So any cline can be taken to any cline.
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2

§49 Transitivity on points and clines

We can combine the effects of Theorems 47.1 and 48.1 to show that Möb+ is
even transitive on point-cline pairs.

Theorem 49.1 Let E, F be any two clines. Let P be a point not on E, and Q
a point not on F . Then there exists an orientation-preserving Möbius transfor-
mation f such that

f(E) = F, f(P ) = Q.

This theorem illustrates the full flexibility of Möbius geometry.

IMAGE: Point-cline transitivity

Proof By Theorem 48.1, there is g ∈ Möb+ such that

g(E) = S1.

By composing with the complex inverse N(z) = 1/z if necessary, we may assume
that

g(P ) ∈ B1.

By Theorem 47.1, there is h ∈ Möb+ such that

h(B1) = B1, h(g(P )) = 0.

It follows that
h(S1) = S1.

Set k = h ◦ g. Then
k(E) = S1, k(P ) = 0.

By the same argument, there is m ∈ Möb+ such that

m(F ) = S1, m(Q) = 0.

Then f := m−1 ◦ k lies in Möb+ and satisfies

f(E) = F, f(P ) = Q,

as required.

2

Exercise 49.1 In Theorem 49.1, how much freedom is there to select f?

Exercise 49.2 Prove that in Möbius geometry, there is no natural notion of
the center of a circle. Prove, indeed, that there is no function from circles to
points that is respected by Möbius transformations.
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Chapter 18

Inversion, again

§50 Inversion in any cline

We will define inversion in a cline. It is the natural generalization of reflection
in a line and inversion in the unit circle.1 Inversion in a cline is always an
orientation-reversing Möbius transformation.

Definition 50.1 Let E be any cline. Define a map

SE : Ĉ→ Ĉ

as follows.

Case 1. If E is a line, let SE be mirror reflection in E. Set SE(∞) =∞.

Case 2. If E is a circle, proceed as follows. Let E have center X and radius R.
Let

z 6= X,∞.
Then define SE(z) to be the point w such that

(a) w lies on the ray emerging from X and passing through z.

(b) |z −X||w −X| = R2.

For the two remaining points, define

SE(z0) =∞, SE(∞) = z0.

We call SE inversion in E. Observe that SS1 = S.

Properties

The following proposition is easy to see.
1See §14 and §42.
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Proposition 50.2 x

(a) SE is a Möbius transformation

(b) SE is orientation-reversing

(c) SE fixes each point of E

(d) S2
E = id

(e) SE reverses the inside and outside of E.

Proof x

We will prove (a). The remaining properties are obvious.

Case 1. E is a line.

Select a rotation f(z) = eiθz of C such that

f(x-axis) = E.

Recall that C(z) = z̄. Then one sees that

SE = f ◦ C ◦ f−1.

Since f and C are Möbius transformations, SE is a Möbius transformation.

Case 2. E is a circle.

Select a similarity g(z) = λz + b, λ > 0, b ∈ C, of C such that

g(S1) = E.

Then one sees that
SE = g ◦ S ◦ g−1.

Since g and S are Möbius transformations, SE is a Möbius transformation.

2

Exercise 50.1 Find formulas of the form (az + b)/(cz + d) for the following :

a) Inversion in a circle with center a ∈ C and radius R > 0.

b) Inversion (reflection) in the line y = mx+ n, where m and n are real.

Uniqueness

Proposition 50.3 For each cline E, SE is the unique Möbius transformation
possessing properties (a)-(d).
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Proof Let f , g be two Möbius transformations possessing properties (a)-(d)
with respect to a cline E. Consider h := f ◦ g−1.
By property (d), g−1 = g. Then by (b) and (c),

1) h fixes each point of E

2) h is orientation-preserving.

By (a) and 2), h has the form

h(z) =
az + b

cz + d

so h is holomorphic on C except for at most one point.

But recall from complex analysis, that a holomorphic map on a connected do-
main is determined by its values on any infinite set that has a point of accumu-
lation in the domain. Since h coincides with the identity on E, it follows that
h = id on the set

Ĉ \ {−d/c,∞}.

But this set is dense in Ĉ and h is continuous. So

h = idĈ.

So
f = g.

2

Later we will see that a fractional linear transformation is determined by its
values at just three points. This results from an easy calculation. So in the
previous proof, we didn’t really need to use the high-powered complex analysis
theorem.

Invariance

The following proposition says that all inversions look alike.

Proposition 50.4 x

All inversions are conjugate. In fact, if E and F are clines and f is a Möbius
transformation with f(E) = F , then

SF = f ◦ SE ◦ f−1.

Proof x

1. Let E, F be clines. By Theorem 48.1, there exists f in Möb+ such that

f(E) = F.
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2. Now let f be any transformation in in Möb+ with

f(E) = F.

To show SF = f◦SE◦f−1, by Proposition 50.3 it suffices to show that f◦SE◦f−1
satisfies each of the properties (a)-(d) of Proposition 50.2 with respect to F . But
each of these follows from the corresponding property for E by chasing through
the compositions. So we are done.

2

In the theory of groups acting on geometric spaces, many interesting groups are
generated by reflections. This story starts with Möb itself:

Exercise 50.2 Prove that the set of all inversions in clines generates Möb.
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Chapter 19

Conformal maps

§51 Definition of conformal maps

We say that a map f is conformal if it is angle-preserving. By angle-preserving,
we mean that the angle between any two curves is preserved.

f αα

Figure 51.1: Two curves and their images

Let us make this more precise. Suppose that U is open in Rn and

f : U ⊆ Rn → Rm.

Such an f is called C1 if it is continuously differentiable. A regular curve is a
C1 curve γ(t) in Rn whose velocity vector never vanishes.

IMAGE: A regular curve; a non-regular curve

The angle between two regular curves β, γ at a point p where they intersect is
the angle between their tangent vectors. We write

∠p(β, γ)
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for this angle. Since the tangent vectors are nonzero, the angle is well-defined.1

αβ(t) γ(t)

Figure 51.2: The angle between two regular curves

If f is a map, note that
f ◦ γ

is the image curve of γ under f .

IMAGE: γ and f ◦ γ

Definition 51.1 Let U ⊆ Rn be open, and let f : U → Rm be a C1 function.
Then f is conformal provided that for any p and any regular curves β, γ that
meet at p, the composed curves

f ◦ β, f ◦ γ

are regular near f(p), and

∠f(p)(f ◦ β, f ◦ γ) = ∠p(β, γ).

In words: the angle between f ◦ γ and f ◦ β at f(p) equals the angle between γ
and β at p.

(In §60 we will treat the case where the domain is S2.)

§52 Easy lemma

The following Lemma states that a linear map is angle-preserving iff it is a
similarity. It is an upgrade of Theorem 8.3.

Lemma 52.1 Let L : Rn → Rm be linear. Then the following are equivalent.
1We assume that the curves have no points of self-intersection, so that the tangent vector

at p is well-defined.
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(a) L is angle-preserving.

(b) L is a similarity (i.e., L scales all distances by constant positive factor).

In the case m = n, these are equivalent to:

(c) L = λK where λ > 0 and K is an orthogonal transformation.

Proof x

The equivalence of (b) and (c) when m = n was in Theorem 8.3.

To prove that (a) is equivalent to (b), note that since L is linear, it takes triangles
to triangles. We will use trigonometry formulas to study these triangles.

IMAGE: A triangle going to a triangle

(b) =⇒ (c) Use the law of cosines

2ab cos(γ) = a2 + b2 − c2.

The law of cosines implies that lengths determine angles. The expression is
homogeneous in the lengths. So if you scale all the lengths in a Euclidean space,
you don’t change the angles. This shows that (b) implies (a).

IMAGE: The law of cosines

(a) =⇒ (b) Recall the law of sines

a

sinα
=

b

sinβ
=

c

sin γ
.

The law of sines implies that angles determine ratios of lengths. Since angles are
preserved, ratios of lengths are preserved. So if the map scales one particular
length by a factor λ, then it scales all lengths by λ. This shows that (a) implies
(b).

IMAGE: The law of sines

2

§53 Analytic criterion

We characterize conformality via the differential Df(x).

Let U ⊆ Rn be open. Let f : U → Rm be C1.

Proposition 53.1 (Analytic criterion) f is conformal if and only for all p
in U , the linear map

Df(p) : Rn :→ Rm

is a similarity.
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Remark. In particular, Df(p) must be injective. It follows that m ≥ n, and if
m = n, Df(p) must be invertible at each p.

Effectively, the Proposition says

A conformal map is an infinitesimal similarity at each point

Now, the Proposition is rather tautological, and the proof is a long-winded
application of the Chain Rule, but it’s worth doing it simply to fix clarify the
ideas.

Lemma 53.2 Let f be C1. Then f takes regular curves to regular curves if
and only if Df(x) is injective for all x.

Proof of Lemma 53.2 x

(⇐=) Assume Df(x) is injective for all x. By the chain rule, for any curve γ,

(f ◦ γ)′(t) = Df(p)(γ′(t))

So γ′(t) 6= 0 implies that (f ◦ γ)′(t) 6= 0.

(=⇒) Suppose that Df(x) is not injective for some x. Select a vector v in the
kernel of Df(x) and a regular curve γ such that γ(0) = x, γ′(0) = v. Then

(f ◦ γ)′(0) = Df(p)(γ′(0)) = Df(p)(v) = 0.

So f ◦ γ is not regular.

2

Proof of Proposition 53.1 x

(=⇒) Assume f is conformal. Let x ∈ U . Let

v, w 6= 0

be vectors at x. Because f takes regular curves to regular curves, Df(x) is
injective and

Df(x)(v), Df(x)(w) 6= 0.

Select regular curves β, γ with

β(0) = γ(0) = x, β′(0) = v, γ′(0) = w.

Then using the chain rule,

∠(Df(x)(v), Df(x)(w)) = ∠((f ◦ β)′(0), (f ◦ γ)′(0))

= ∠f(x)(f ◦ β, f ◦ γ)

= ∠x(β, γ) by conformality
= ∠(v, w).
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So Df(x) is angle preserving. By the Lemma, Df(x) is a similarity. This holds
for every x ∈ U .

(⇐=) We reverse the steps in the previous argument.

Assume Df(x) is a similarity at each x ∈ U . Then Df(x) is injective at every
x. By the Lemma, f takes regular curves to regular curves.

Now assume β, γ are regular curves that meet at x. Then f ◦ β, f ◦ γ are also
regular curves. Now for some s, t,

β(s) = γ(t) = x.

Since Df(x) is a similarity, it is angle-preserving, and we obtain using the chain
rule,

∠f(x)(f ◦ β, f ◦ γ) = ∠((f ◦ β)′(0), (f ◦ γ)′(0))

= ∠(Df(x)(v), Df(x)(w)

= ∠(v, w)

= ∠x(β, γ).

So f preserves angles between regular curves. So f is conformal.

2

§54 Small sphere criterion

The following exercise is straightforward.

Exercise 54.1 Let L : Rn → Rn be linear. Then

(a) L takes spheres to ellipsoids.

(b) L is a similarity iff f takes spheres to spheres.

This has as a consequence the following heuristic principle:

A conformal map is a map that takes
infinitesimal spheres to infinitesimal spheres

More concretely, a conformal map takes very small spheres to very small ap-
proximate spheres.

IMAGE: Small spheres go to small approximate spheres

This follows from the Taylor expansion

f(x+ v) = f(x) +Df(a) · v +O(|v|2).

129 Table of Contents



PART II CHAPTER 19. CONFORMAL MAPS

Using this, we see

f is conformal⇐⇒ for all x, Df(x) is a similarity
⇐⇒ for all x, Df(x) takes spheres to spheres
⇐⇒ f takes small spheres to small approximate spheres.

The last equivalence holds because in the Taylor expansion, adding f(x) is just
a translation and O(|v|2) has little effect for small spheres about x.

Of course, in the two-dimensional case, the formulation is “f takes small circles
to small approximate circles”.

§55 Composition and inverse rules

Theorem 55.1 For maps between open domains of Rn,

(a) The inverse of a bijective conformal map is conformal.

(b) The composition of two conformal maps is conformal.

This is intuitively clear because “angle-preserving” transmits easily, but we will
give a formal proof in this case.

Proof x

(a) Let f be conformal. Then in particular, Df(x) is invertible. By the inverse
function theorem and the fact that f is bijective, the inverse function f−1 is C1,
and D(f−1)(f(x)) = (Df(x))−1. In particular D(f−1)(y) is bijective for any y.
Then D(f−1)(y) is angle-preserving because Df(x) is angle-preserving. So f−1
is conformal.

(b) Let f and g be conformal. Assume that f ◦ g is well-defined. By the chain
rule,

D(f ◦ g)(x) = Df(g(x) ◦Dg(x).

So D(f ◦ g)(x) will be injective and angle-preserving because Df(g(x)) and
Dg(x) are. So f ◦ g is conformal.

2
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Chapter 20

Conformal and holomorphic

§56 Angle-preserving linear maps of R2

Complex linear and complex antilinear maps of R2

Let z = x+ iy. Let a = c+ id. Here x, y, c, d are real. We express z as a vector

z ←→
(
x
y

)
.

Claim The multiplication operator Ma can be expressed as a 2× 2 real matrix

Ma ←→
(
c −d
d c

)
.

Proof x

We have

Ma(z) = az = (c+ id)(x+ iy) = (cx− dy) + i(cy + dx).

But (
c −d
d c

)(
x
y

)
=

(
cx− dy
cy + dx

)
.

which agrees with the above. So the matrix(
c −d
d c

)
expresses the multiplication operator Mc+id.

2
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In particular, Mi, multiplication by i, is represented by the matrix

J :=

(
0 −1
1 0

)
which is a 90 rotation of R2.

Inspired by this, we make some further definitions. Let

A =

(
p q
r s

)
be a general 2× 2 real matrix. We call A complex linear if

AJ = JA

that is, it commutes with J , and complex antilinear if

AJ = −JA,

that is, it anticommutes with J .

Proposition 56.1 x

(a) The complex linear matrices are precisely the ones of the form(
c −d
d c

)
.

(b) The complex antilinear matrices are precisely the ones of the form(
c d
d −c

)
.

Do the proof yourself. It is more or less instantaneous.

Note that by the determinant criterion, the complex-linear maps are orientation-
preserving, and the complex antilinear maps are orientation-reversing.

Let us write

M := {A : A is a 2× 2 real matrix}
M+ := {A ∈M : A is complex linear}
M− := {A ∈M : A is complex antilinear}

Then
M =M+ ⊕M−

is an orthogonal decomposition of M ∼= R4 into the sum of two 2-dimensional
vector spaces.
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ℳ
ℳ

+
-

Figure 56.1: Orthogonal decomposition

Note thatM+ is actually a copy of the complex field because the injective map

c+ id 7→
(
c −d
d c

)
preserves both addition and multiplication. That is, the complex field is iso-
morphic to the set of 2× 2 real matrices that commute with J .

Angle-preserving linear maps of R2

We can easily verify

Proposition 56.2 A linear map A : R2 → R2 is angle-preserving if and only
if A 6= 0 and either

(a) A is complex linear, or

(b) A is complex antilinear.

You can prove this yourself.

Alternately, you can recognize it as a reformulation of a statement in §8.

Namely, from §8 we have that the linear similarities of R2 are just the maps

z 7→ az, z 7→ az̄,

where a 6= 0 ∈ C.

Case (a) corresponds to z 7→ az, as we have seen.

For case (b), note that complex conjugation

C : z 7→ z̄
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is represented by the matrix (
1 0
0 −1

)
.

We have (
c d
d −c

)
=

(
c −d
d c

)(
1 0
0 −1

)

so the complex antilinear matrix

(
c d
d −c

)

represents the transformation

z 7→ az̄

where a = c+ id.

Exercise 56.1 x

(a) Let

A =

(
p q
r s

)
, p, q, r, s real.

The determinant condition ps− qr = 0 can be diagonalized to a quadratic equa-
tion of the form

x21 + x22 − x23 − x24 = 0.

whereM+ = {x3 = x4 = 0} andM− = {x1 = x2 = 0}.
So the set Σ of 2× 2 singular matrices is a cone in R4.

(b) Σ is the set of points in R4 that are equidistant from the 2-planes M+ and
M−. (c) Σ is the set of vectors in R4 that make an angle of 45◦ with every
nonzero vector inM+ and inM−.
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ℳ
ℳ

+
-

det(A)=0

Figure 56.2: Orthogonal decomposition

The green set is a 3-dimensional cone in R4. It is curvy, as shown.

§57 Holomorphic and antiholomorphic maps

Let U ⊆ R2 be open. Let f = u+ iv : U → R2 be continuously differentiable.

Recall that f is holomorphic if at all points of U , f satisfies the partial differential
equation

∂f

∂z̄
:=

1

2

[
∂f

∂x
+ i

∂f

∂y

]
=

1

2
[(ux − vy) + i(uy + vx)] = 0.

This is equivalent to saying that

Df(z) =

(
ux uy
vx vy

)
has the pattern

Df(z) =

(
p −q
q p

)
i.e.

Df(z) ∈M+

(complex linear) at every z.

If f is holomorphic, we write f ′ = ∂f/∂z.
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Recall that f is antiholomorphic if at all points of U , f satisfies the partial
differential equation

∂f

∂z
:=

1

2

[
∂f

∂x
− i∂f

∂y

]
=

1

2
[(ux + vy) + i(−uy + vx)] = 0.

This is equivalent to saying that Df(z) has the pattern

Df(z) =

(
p q
q −p

)
i.e.

Df(z) ∈M−

(complex antilinear) at every z.

From this we conclude via Propositions 53.1 and 56.2

Proposition 57.1 x

1) If f is holomorphic, then f is conformal on the open set where the derivative
does not vanish.

2) If f is antiholomorphic, then f is conformal on the open set where the deriva-
tive does not vanish.

We also have the converse, provided the domain is connected.

Proposition 57.2 Suppose U is a connected open set in C and f : U → C is
conformal. Then f is either holomorphic or antiholomorphic.

Proof x

By Proposition 53.1, Df never vanishes, and by Proposition 56.2, Df(z) lies in
M+ or inM− for each z in U . So

Df(U) ⊆ (M+ \ {0}) ∪ (M− \ {0}).

Since f is conformal, f is C1, so Df is continuous. But the continuous image
of a connected set is connected, so we have either

Df(U) ⊆M+ \ {0}

or
Df(U) ⊆M− \ {0}.

In the first case, f is holomorphic, and in the second case, f is antiholomorphic.

2
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Inverses of holomorphic maps

We close with a well-known theorem of complex analysis: the inverse of a holo-
morphic map is holomorphic.

Proposition 57.3 Suppose f : U → V is bijective, where U, V ⊆ C are open.
If f is holomorphic, then its inverse f−1 : V → U is holomorphic.

Such maps are called biholomorphic.

Proof x

1. Let g = f−1. We aim to prove that g is holomorphic.

Let z0 be any point in U . Consider the Taylor expansion

f(z) = f(z0) + f ′(z0)(z − z0) + . . .

Since f is injective, we must have f ′(z0) 6= 0. By the Inverse Function Theorem,
that implies that there are open neighborhoods U ′ ⊆ U of z0 and V ′ ⊆ V of
f(z0) such that f |U ′ : U ′ → V ′ is bijective and g|V ′ = (f |U ′)−1 is C1. Since
every point of V is f(z0) for some z0 in U , it follows that g is C1.

2. Then for each w in V ,

Dg(w) = ((Df)(g(w)))−1

as linear maps R2 → R2. Since the inverse of a matrix in M+ \ {0} lies in
M+ \ {0}, it follows that g is holomorphic.

2
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Chapter 21

Möbius transformations are
conformal on C minus pole

§58 Möbius transformations are conformal on C
minus pole

As an application of the above, we have

Theorem 58.1 A Möbius transformation f is conformal on C except at the
pole f−1(∞).

Proof x

Recall that a Möbius transformation f : Ĉ → Ĉ is classically defined except at
the points

∞, f−1(∞).

It is holomorphic or antiholomorphic where it is classically defined. So by Propo-
sition 57.1, f is conformal on C \ {f−1(∞)}.

2

What about the two remaining points?

We fix this by transferring f to the Riemann sphere S2. In §60 - §63, we show
that

f̃ = σ−1 ◦ f ◦ σ : S2 → S2

is conformal everywhere. This heals the two bad points ∞ and f−1(∞).
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§59 Visualizing the parabolic knot

We are now in a position to better understand the parabolic transformation in
§28.4. In particular, we can solve Exercise 28.1.

Recall that a parabolic transformation is any transformation that is conjugate
to a translation

Tb(z) = z + b

where b ∈ C, b 6= 0. Note that Tb has a single fixed point at z =∞.

Figure 59.1: A translation of C

We claimed in §28.4 that the action of

T̃b = σ−1 ◦ Tb ◦ σ

on S2 looks like this.

Figure 59.2: Action of T̃b on S2 (Needham, Visual Complex Analysis)

T̃b has a single fixed point at N . The simple translative action on C yields a
complicated knot on S2 near N .
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To study the pattern of movement of T̃b near N , let us use stereographic pro-
jection from the south pole to transfer N to the point z = 0.

This will have the effect of projecting the knot around N to a similar-looking
knot around z = 0. The advantage of the latter is that it will be a Möbius
transformation with a concrete formula.

Define

Ub(z) := σ′ ◦ T̃b ◦ (σ′)−1.

Then

Ub(z) = σ′ ◦ (σ−1 ◦ Tb ◦ σ) ◦ (σ′)−1

so by Lemma 43.1,

Ub(z) = (S ◦ f ◦ S)(z)

=
1

Tb(1/z̄)

=
1

1/z̄ + b

=
1

1/z + b̄

=
z

b̄z + 1
.

In particular, Ub is a Möbius transformation. Just as Tb has its unique fixed
point at z = ∞, so Ub has its unique fixed point at z = 0. Ub is a parabolic
transformation.

By Theorem 58.1, Ub is conformal on C except at the pole z = −1/b̄. In
particular, Ub is conformal in a neighborborhood of zero.

Let us analyze Ub. To make things concrete, take b = t, where t is real. The
picture is the following.
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●

●z

(z)tU

Figure 59.3: Action of Ut on C

For a fixed value of t, Ut moves each z a certain distance along the red curve
containing z. So each red curve is a trajectory

Ut(z), t ∈ R

where z is fixed and t varies. The trajectories show in Figure 59.3 are the images
of the trajectories shown in Figure 59.2 under stereographic projection from the
south pole. So we have a picture of the “parabolic knot” in the plane.

Let us verify that the trajectories are as they appear.

Proposition 59.1 Each trajectory of Ut is a cline tangent to the x-axis at 0.

Proof x

1. Since t is real, the formula is

Ut(z) =
z

tz + 1
.

If z is real and z 6= 0, it is easily seen that Ut(z) sweeps out R̂, except 0.

2. Fix a point z = iu, u ∈ R, u 6= 0 on the imaginary axis.

Let us see where it goes under Ut. We are hoping that it makes a circle tangent
to the x-axis at 0. Then it must be the circle C with

radius =
u

2
, center =

iu

2
.

So we expect that Ut(iu) satisfies the equation∣∣∣∣z − iu

2

∣∣∣∣2 =
u2

4
.
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Compute ∣∣∣∣Ut(iu)− iu

2

∣∣∣∣2 =

∣∣∣∣ iu

itu+ 1
− iu

2

∣∣∣∣2
=

∣∣∣∣2iu− iu(itu+ 1)

2(itu+ 1)

∣∣∣∣2
=
|iu+ tu2|2

4|itu+ 1|2

=
u2 + t2u4

4(t2u2 + 1)

=
u2

4
,

as expected. So
Ut(iu) ∈ C, for allu ∈ R

3. Does Ut(u) reach the whole circle as t varies? Note that when t� 0,

Ut(iu) ≈ 1

t
> 0

so Ut(iu) approaches 0 from the right as t→∞. Similarly, when t� 0,

Ut(iu) ≈ 1

t
< 0

so Ut(iu) approaches 0 from the left as t → ∞. So by topology, Ut(iu) must
visit every point of the circle C as t varies over the real line.

4. With a little more work, we can see that ut(iu) visits each point of C exactly
once. Compute

d

dt
Ut(z) =

d

dt

z

tz + 1

= − z2

(tz + 1)2

6= 0

provided z 6= 0. This proves that Ut(z) never stops, so it must move around C
unidirectionally from 0− to 0+, never visiting the same point twice.

2

Exercise 59.1 An alternative way to prove Step 2 of Proposition 59.1 is the
following. Prove by differentiation that the quantity∣∣∣∣Ut(iu)− iu

2

∣∣∣∣2
remains constant as t varies over the real line.
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Exercise 59.2 Another proof of Proposition 59.1 is to show that the clines
tangent to the x axis at 0 correspond to horizontal lines under inversion in the
unit circle. Carry this out.

The following picture gives more information about Ut.

Figure 59.4: Action of Ut on C

Proposition 59.2 Ut permutes the clines tangent to the y-axis at 0.

These clines are shown in blue in the Figure. Let B denote the collection of all
clines tangent to the y-axis at 0.

Proof x

1. Let C be a cline in B. Then Ut(C) is a cline by Theorem 46.1. Since
Ut(0) = 0, Ut(C) passes through 0.

2. What is the tangent line to Ut(C) at 0? Compute

U ′t(0) =
d

dz

(
z

tz + 1

)∣∣∣∣
z=0

=

(
1

tz + 1
− tz

(tz + 1)2

)∣∣∣∣
z=0

= 1− 0

= 1.

So the tangent line to Ut(C) at 0 is equal to the tangent line to C at 0. So
Ut(C) is tangent to the y-axis at 0. So Ut(C) lies in B. So Ut permutes the
clines in B.

2
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Summary

Let

A = {clines tangent to x-axis at 0} (red curves)
B = {clines tangent to y-axis at 0} (blue curves)

Then

• Ut slides each cline in A along itself.

• Ut permutes the clines in B.
These results are consistent with the fact that a Möbius transformation takes
clines to clines.

Exercise 59.3 Prove that the clines in A are orthogonal to the clines in B.

There are two approaches.

a) A proof using constructions of plane geometry.

b) A proof by applying inversion in the unit circle and recalling that Möbius
transformations preserve angles.
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Chapter 22

Stereographic projection is
conformal

§60 Conformal maps with domain S2

In the following sections (and the rest of the script), we would like to speak of
conformal maps

U → V, U → U ′, U ′ → U, S2 → S2

where U , V are open sets in C and U ′ is an open set in S2.

The first two can be handled by the definitions and results of §51-§55, but the
last two require a bit of explanation.

In the next few sections, we intend to prove

• Stereographic projection S2 \ {N} → C is conformal
• Möbius transformations S2 → S2 are conformal.

To define what this means, in principle we must extend the material in §51-§55
to the case where the domain is S2.

However, we will proceed somewhat informally and confine ourselves to the
following remarks.

Effectively, we have to do a little bit of differentiable manifold theory (since S2

is a differentiable manifold), but we will keep it light and avoid proofs.

Characterization of conformality for S2

Suppose f : U ′ ⊆ S2 → Rm is a function, where U ′ ⊆ S2 is open.
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1) We already know what it means for f to be continuous because S2 is a
topological space.

2) We define f to be C1 if f can be extended to a C1 function defined on an
open neighborhood of U ′ in R3.

Here is the most important case. Suppose U ′ = S2 \ {N}. Then stereographic
projection

σ|U ′ : U ′ → C

is C1 in the sense just described. To see this, recall formula (10.1), which says

σ(a, b, c) =
a+ ib

1− c
(a, b, c) ∈ S2 \ {(0, 0, 1)}. (60.1)

Note that this formula actually defines a function

Σ : W → C

where W is the open set

{(a, b, c) ∈ R3 : c < 1}

in R3. We have W ∩S2 = U ′ and Σ|U ′ = σ. But Σ is very nicely C1 on W just
by differentiating the formula. So σ is considered C1 according to our definition.

Using this definition, we can verify such tools as the Chain Rule, the Inverse
Function Theorem, and so forth. But these tasks properly belongs to the theory
of differentiable manifolds.

3) Define f : U ′ ⊆ S2 → Rm to be conformal if it is C1, takes regular curves to
regular curves, and preserves angles between curves – just like Definition 51.1.

This gives a definition of conformal for the cases

U ′ ⊆ S2 → U, S2 → S2

mentioned above.

4) Now, it is possible to proceed to statements analogous to Lemma 53.2, Propo-
sition 53.1, and Exercise 54.1.

Let us state these informally. Let f : U ′ ⊆ S2 → Rm be C1. Let TxS2 denote
the tangent plane to S2 at x, translated to the origin so that it is a 2-dimensional
vector space.

a) f takes regular curves to regular curves iff Df(x)|TxM is injective for all
x in U ′.

b) f is conformal iff Df(x)|TxU ′ is a similarity for all x ∈ U ′. In particular,
Df(x)|TxU ′ must be injective.

c) f is conformal iff f takes small circles to small approximate circles.
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5) We’ve included remarks 1)-4) for completeness, but what we really need is
the following theorem, analogous to Theorem 60.1.

Theorem 60.1 Let U , V , W be open sets variously in C or in S2.

(a) Let f : U → V , g : V → W be conformal. Then their composition is
conformal.

(b) Let f : U → V be conformal and bijective. Then f−1 is conformal.

Proof sketch x

(a) This is follows immediately from the definition in 3) together with an ap-
propriate use of the Chain Rule.

(b) This requires a suitable use of the Inverse Function Theorem.

2

§61 Stereographic projection is conformal

Theorem 61.1 Stereographic projection

σ|(S2 \ {N}) : S2 \ {N} → C

and its inverse
τ |C : C→ S2 \ {N}.

are conformal.

Note the pairs of curves in the following diagram, whose angles are preserved.

Figure 61.1: Circles go to clines (Delman-Galperin, 2003)

Here is a quick argument: In Theorem 41.1, we have already shown that circles
go to clines. So small circles go to small circles. (Not just approximate circles!)
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Applying §60, Remark 4c), we get that stereographic projection and its inverse
are conformal.

Let us give a direct argument and try to visualize it. The pictures are similar
to those in the proof of Theorem 41.1.

Proof x

1. Effectively, we’ll repeat the argument of Theorem 41.1, but apply it to very
small vectors representing tangent vectors.

The infinitesimal process, acting on tangent vectors to S2, will turn out to be:

reflection followed by dilation.

Both of these operations preserve angles, and that will establish conformality.

In contrast to Theorem 41.1, there is a limit process involved, which we will do
in a slightly fuzzy way. But we’ll capture the geometry.

Here are P and σ(P ).

ℂ

P

σ(P)

Let v be a vector tangent to S2 at P . v should be very small since effectively,
we want to take the derivative of σ at P . We have illustrated a v that happens
to lie in the plane of the paper (the plane w), but the reader should visualize
any v tangent to S2 at P .

v

image of v under σ

p

ℂ
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Recall the Equal Angle Lemma, Lemma 39.1, which states that p := TPS
2 and

C make the same angle ε with L.

ε

ε

p

ℂ

L

Introduce the plane p′ parallel to C through P . It makes the same angle ε with
L as p and C do.

ε

ε

ε

p

p'

ℂ

Introduce a plane of reflection x perpendicular to L at P . Reflection in x
interchanges p and p′.

ε

ε

p
x

p'

ℂ

ε

Reflection plane

Now put everything together in one picture.
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ε

ε

ε

v
v'

σ(v)

p
x

p'

ℂ

v' = reflection of v in p' 

2. Now how does v map to σ(v)?

You draw a projection line L′ through N and v, and follow it down to C where
it intersects at σ(v). We denote this

v → σ(v).

Alternately, there is an approximate pathway as follows. Notice that when v
is very small, the projection line L′ through v is very nearly parallel to the
projection line L through P .

Where does L′ meet p′?

Since L′ is nearly parallel to L, and v′ is the reflection of v in x, L′ nearly meets
p′ at v′.

Not quite, though - note the small discrepancy in the picture above. It is a
small percentage difference for a vector that is already small.

So we can (at the approximate level) break down the flight of v, namely

v → σ(v),

into two steps
v → v′ → σ(v′).

This is illustrated here:

ε

ε

ε

v
v'

σ(v)

p
x

p'

ℂ

v' = reflection of v in p' 

σ(v) ≈ σ(v')

σ(v')
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This shows that
σ(v′) ≈ σ(v).

to a high degree of precision. (Meaning they are much closer to each other than
to the zero vector.)

3. But v → v′ is a reflection, and v′ → σ(v′) is a dilation, so the composed map

v 7→ v′ 7→ σ(v′)

is a dilation. So it preserves angles. So the original map

v 7→ σ(v)

approximately preserves angles.

As v becomes smaller, the approximation becomes more exact. Taking a limit,
σ exactly preserves angles. In consequence, its inverse τ also conserves angles.

2

From the above visual proof we want to isolate the following observation for
future use.

Proposition 61.2 Let v be an infinitestimal tangent vector to S2 at P . Let w
denote the image of v under the action of σ. So w is an infinitesimal tangent
vector to C at Q = σ(P ). Then

w = (D ◦R)(v)

where R is reflection in the plane x, and D is the dilation of R3 about the point
N that takes P to Q.

151 Table of Contents



PART II CHAPTER 23. MÖBIUS TRANSFORMATIONS

Chapter 23

Möbius transformations are
conformal on S2

§62 Groups of conformal maps

Let U be an open set in C or in S2.

We have the following principles (see Theorems 60.1 and 60.1).

1) idU is conformal.
2) If f : U → U is bijective and conformal, then f−1 is conformal.
3) If f, g : U → U conformal, then f ◦ g is conformal.

Define

Conf(U) := {f : U → U | f is bijective and conformal}.

Then by the above,

Conf(U) is a group.

We will study the following groups in detail:

Conf(C), Conf(S2), Conf(B1), Conf(H+).

The latter two will be useful to us in our study of hyperbolic geometry because
they act on the two famous models B1 and H+ of the hyperbolic plane.

We will show:

i) Möbius transformations are conformal
ii) For these four domains, at least, conformal transformations are Möbius.
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§63 Möbius transformations are conformal on S2

In this section, we will prove that Möbius transformations act conformally on
S2. Recall that the action is

f̃ = σ−1 ◦ f ◦ σ : S2 → S2.

Theorem 63.1 Möb acts on S2 by conformal transformations.

To make this statement more explicit, recall that

M̃öb = {f̃ : f ∈ Möb},

a group of bijections of S2. Then

∼ : Möb→ M̃öb

is an isomorphism. The Theorem can be restated as

M̃öb ⊆ Conf(S2)

or alternately as a monomorphism1

∼ : Möb ↪→ Conf(S2).

Concept of proof

The idea of the proof is to transfer the conformality of f to f̃ via stereographic
projection.

As noted in §57, a Möbius transformation f is conformal except at the points
∞, f−1(∞) (the latter being the pole of f). So unfortunately, this strategy
misses two points.

The fix is to use stereographic projection both from the north pole and from the
south pole. Indeed, S2 is covered by two conformal “charts”,

σ|(S2 \ {N}) : S2 \ {N} → C, σ′|(S2 \ {S}) : S2 \ {S} → C,

where σ′ is stereographic projection from the south pole. Together, these cover
all the points of S2. In the figure, the two charts are shown as if C were wrapped
around S2, missing only one point in each case.

1In §70, we will show that this is actually an isomorphism.
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Figure 63.1: Covering S2 by two charts

We will do two proofs using this idea. They are not really that different.

• A proof by generators (which uses the charts)

• A proof by charts

§64 First proof - by generators

First proof of Theorem 63.1 x

1. By Theorem 26.1, Möb is generated by

Ma, Tb, S, C,

where a 6= 0, b ∈ C, S is inversion in the unit circle, and C is complex conjuga-
tion. It suffices to check that each of these acts conformally on S2.

2. Note that both S̃ and C̃ are reflections of S2, so they are conformal on S2.

3. Claim: M̃a and T̃b are conformal on S2.

Let us prove this.

Let f denote either Ma or Tb. In both cases we have that f fixes ∞. Now

f̃ = σ−1 ◦ f ◦ σ.

So f̃ fixes N .

We will show that f̃ is conformal on two open sets U1 and U2, where

a) U1 is S2 \ {N}
b) U2 is a small open disk around N .
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Since U1 and U2 together cover S2, this will prove that f̃ is conformal on S2.

4. Let us prove a). Restricting to U1 = S2 \ {N}, we get a chain of bijections

U1 C C U1
σ|U1

f̃ |U1

f |C σ−1|C

Since σ is conformal from U1 to C, f is conformal from C to C, and σ−1 is
conformal from C to U1, we get that

f̃ is conformal on U1.

This proves a).

3. Let us prove b).

The idea is to stereographically project from the south pole, so that N gets
mapped to an ordinary point of C, namely 0. The conjugated map behaves well
near 0. That is what’s needed.

So let σ′ be stereographic projection from the south pole. Define

g := σ′ ◦ f̃ ◦ (σ′)−1

Then
f̃ = (σ′)−1 ◦ g ◦ σ′.

So we get a chain of bijections

S2 Ĉ Ĉ S2

σ′

f̃

g (σ′)−1

We would like to show that the composition is conformal on some small open
neighborhood U2 of N .

4. Let us check that g is a Möbius transformation. Indeed,

g = σ′ ◦ f̃ ◦ (σ′)−1 = σ′ ◦ (σ−1 ◦ f ◦ σ) ◦ (σ′)−1 = S ◦ f ◦ S

where S(z) = 1/z̄ is inversion in S1. (See Lemma 43.1.) This exhibits g as the
composition of three Möbius transformations, so g is a Möbius transformation.

5. In contrast to case a), g|C is not conformal everywhere on C – it has a finite
pole somewhere, which we must avoid.

Fortunately the pole is not at z = 0. Indeed,

g(0) = (σ′ ◦ f̃ ◦ (σ′)−1)(0) = (σ′ ◦ f̃)(N) = σ′(N) = 0.
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So the pole g−1(∞) is not at 0.

6. Now g is holomorphic or anti-holomorphic, hence conformal, except at ∞
and g−1(∞). In particular, g is conformal on a small open disk D about 0. Set

U2 := (σ′)−1(D),

a small open neighborhood of N in S2. Note also that g(D) ⊆ C. We get the
following chain of bijections

U2 D g(D) (σ′)−1(g(D))
σ′|U2

f̃ |U2

g|D (σ′)−1|g(D)

Now σ′ is conformal from U2 to C, g is conformal from D to g(D), and (σ′)−1

is conformal from g(D) to (σ′)−1(g(D)). It follows by composition that

f̃ is conformal on U2.

This proves b). The Claim follows.

7. The maps
M̃a, T̃b, S̃, C̃.

generate M̃öb. But these are conformal by Steps 1-4. By composing and tak-
ing inverses (Theorem 60.1), every map in M̃öb is conformal. This proves the
Theorem.

2

Exercise 64.1 Suppose f(z) = az + b (combining the transformations Ma and
Tb).

a) Derive the formula for

g = σ′ ◦ f̃ ◦ (σ′)−1.

b) Verify explicitly that g is Möbius and the pole of g is not at z = 0.

§65 Second proof - by charts

The idea is to use stereographic projection both from the north pole and from
the south pole – treated on an equal basis, and without referring to generators.

The idea is intuitively clear, but to cover all the possibilities, the notation is a
bit unwieldy.
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Second proof of Theorem 63.1 (sketch) x

1. Let f be a Möbius transformation. Set

f̃ = σ−1 ◦ f ◦ σ : S2 → S2.

We wish to show that f̃ is conformal.

Consider the following four maps of Ĉ:

f00 := σ ◦ f̃ ◦ σ−1

f01 := σ ◦ f̃ ◦ (σ′)−1

f10 := σ′ ◦ f̃ ◦ σ−1

f11 := σ′ ◦ f̃ ◦ (σ′)−1.

Note that f1 = f . Each fi is a Möbius transformation of Ĉ, so it is conformal
from Ĉ to Ĉ except at two points.

Now f̃ can be expressed in four ways,

f̃ = σ−1 ◦ f00 ◦ σ
= σ−1 ◦ f01 ◦ σ′

= (σ′)−1 ◦ f10 ◦ σ
= (σ′)−1 ◦ f11 ◦ σ′.

We will show that for any point P in S2, at least one of these maps can be used
to prove that f̃ is conformal near P . We prove

Claim: For each P ∈ S2, there exists an open set U of S2 containing P such
that

f̃ is conformal on U .

The Claim, in turn, implies that f is conformal on S2.

2. Let us prove the Claim. Write uniformly

fij = σi ◦ f̃ ◦ σ−1j , f̃ = σ−1i ◦ fij ◦ σj ,

where
σ0 := σ, σ1 := σ′.

Set
A0 = N, A1 = S,

where N is the north pole, S is the south pole. We have the following conformal
bijections

S2 \ {Ai} S2 \ {Aj}

Ĉ \ {∞} Ĉ \ {∞}

σi|S2\{Ai} σj |S2\{Aj}
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So we get four bijections

S2 \ {Ai, f̃−1(Aj)} S2 \ {f̃(Ai), Aj}

Ĉ \ {∞, σi(f̃−1(Aj))} Ĉ \ {σj(f̃(Ai)),∞}

σi|S2\{Ai,f̃−1(Aj)}

f̃ |S2\{Ai,f̃−1(Aj)}

σj |S2\{f̃(Ai),Aj}

fij |Ĉ\{∞,σi(f̃−1(Aj))}

Note that the point
σi(f̃

−1(Aj))

in Ĉ is exactly the pole of fij . So the bottom map

fij |Ĉ \ {∞, σi(f̃−1(Aj))}

in the above square is conformal. The side maps are conformal as well. By
composition and inverses, this shows that the top map

f̃ |S2 \ {Ai, f̃−1(Aj)}

is conformal.

3. But we have
A1 6= A2, f̃−1(A1) 6= f̃−1(A2).

Therefore, for any point P ∈ S2, there exist i, j ∈ {0, 1} such that

P 6= Ai, f̃
−1(Aj).

Then f̃ is conformal on the open set

S2 \ {Ai, f̃−1(Aj)}

containing P . This proves the Lemma and the Theorem.

2

Exercise 65.1 In the foregoing proof, why isn’t it enough just to consider the
two maps σ ◦ f̃ ◦ σ−1 and σ′ ◦ f̃ ◦ (σ′)−1, as we did in §64? Can you give an
example where it fails?

§66 What is Möbius geometry?

Möbius geometry is the study of the group Möb, and anything that is invariant
under Möb. The objects we have studied so far are

points, clines, angles in Ĉ
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and
points, circles, angles in S2.

These entities are invariant under the action of Möb in the sense that points go
to points, clines go to clines (resp. circles go to circles), and angles are preserved
(where defined).

Not only that, but according to more theorems, the objects in Ĉ correspond to
the objects in S2 under stereographic projection.

Therefore, the two models appear to be equivalent.

Well, almost. There is a caveat: The S2 model is actually superior because
angles are defined everywhere, even at N , and Möbius transformations are con-
formal everywhere (no exceptional points). The S2 model has now fully repaired
the defects of Ĉ.

In any case, we generally identify the two models via σ. In particular, we will
refer to the circles in S2 as clines.

In §91 we will find one more entity that is preserved by the Möbius group,
namely the cross ratio

[z1, z2; z3, z4]

of four points. That will complete the list of entities in Möbius geometry.
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Chapter 24

Inversions, continued

§67 Orthogonal clines

Let us prove some things about orthogonal clines. They will be useful in the
next section.

Proposition 67.1 Let E be a cline in S2. Let P , Q be distinct points on E.
Then there exists a unique cline F through P and Q that is orthogonal to E at
P and at Q.

(Note that the statement refers to the S2 model so that angles are defined
everwhere.)

F
E

P

Q

●

●

Figure 67.1: Two clines that are orthogonal

Proof x

1. Let E be a cline in S2. Let P , Q be distinct points in E.

By Theorem 48.1, there is a Möbius transformation that takes E to the equator.
Then stereographic projection takes the equator to S1. Since the statement of
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the Proposition is invariant under conformal transformations, it suffices to prove
the Proposition (in Ĉ) for

E = S1.

2. Suppose P , Q are diametrically opposite on E.

Let F be the extended line through P and Q. Then F is orthogonal to E at P
and Q. This proves existence in this case.

Conversely, suppose F is a cline orthogonal to E at P and Q. It is clear that F
must be a line. So F must be the extended line constructed above. This proves
uniqueness in this case.

FE

P

Q●

●

Figure 67.2: Finding X

3. Suppose that P , Q are not diametrically opposite.

Let A be the line tangent to E at P . Let B be the line tangent to E at Q. Then
A and B are not parallel. Set

X := intersection of A and B.

FE

P

Q
●

●

X●

Figure 67.3: Finding X

Then |PX| = |QX|. Let
R := |PX| = |QX|.
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Let F be the circle with center X and radius R. Then F is orthogonal to S1 at
P,Q. This proves existence in this case.

Conversely, if F is a cline orthogonal to E at P and Q, it is clear that F cannot
be a line. So F must be a circle. Then its center must be the X constructed
above, and its radius the R. This proves uniqueness in this case.

2

Exercise 67.1 In the situation of Proposition 67.1, show that if

1) F goes through P and Q,
2) F is orthogonal to E at just one of the points P , Q,

then F is orthogonal to E at both points.

The following is an easy consequence of the above Proposition.

Proposition 67.2 Suppose F is a cline that meets E orthogonally. Then
SE(F ) = F .

Proof x

Let P , Q be the two points of intersection of F with E. (There must be two
because the clines meet orthogonally.)

Now SE fixes each point of E, so P , Q are the points of intersection of SE(F )
with E.

Also SE is conformal (by Theorem 63.1), so SE(F ) meets E orthogonally at P ,
Q.

By the uniqueness statement of Proposition 67.1, we get

SE(F ) = F.

2

§68 The reticule view of inversions

We continue the discussion of inversions from §50.

In the Riemann sphere, there is a simple picture of the effect of inversion in a
cline. Let us present it.

Let E be a cline in S2. Then SE fixes each point of E, and exchanges the two
components of the complement of E.
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E

Figure 68.1: A cline

Now E has a center P on S2, and P has an antipodal point −P . SE exchanges
P and −P :

SE(P ) = −P, SE(−P ) = P.

This can be proven by rotating the sphere so that P = N and −P = S. Then
E becomes a circle E′ of latitude (Breitengrad). Conjugating by σ into Ĉ, E′
becomes a circle E′′ with center equal to the origin. Then by the formula for
inversion, it can be seen that SE′′ exchanges 0 and ∞, so SE′ exchanges S and
P , so SE exchanges P and −P .

● P

○ P' 

E

Figure 68.2: The center of the circle and its antipode

Now let us define a reticule (Gradnetz).

Let A be the collection of great circles through P and −P . They are all orthog-
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onal to E. Effectively, they are lines of longitude (Längengrade) where P , −P
play the role of the poles.

Let B be the collection of circles “parallel” to E. Effectively, they are lines of
latitude with respect to P and −P . The circles in B are orthogonal to the circles
in A.
Together, A and B form a graticule with respect to P and −P .

E

Figure 68.3: Graticule (Tom MacWright, modified)

What is the effect of SE on the graticule?

Proposition 68.1 x

(a) SE preserves each cline in A.
(b) SE permutes the clines in B.
(c) SE takes the graticule to itself.

Proof x

(a) Let F ∈ A. Then by Proposition 67.2, SE preserves F , while flipping it
across E.

(b) Let F ∈ B. Then F is orthogonal to the clines in A. By conformality, SE(F )
is orthogonal to the clines in A. So SE(F ) ∈ B.
(c) Follows.

2

Exercise 68.1 Suppose E and F are “parallel” circles in S2, meaning they are
obtained by intersecting S2 with parallel planes, namely

E = S2 ∩ {x = s}, F = S2 ∩ {x = r}
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where −1 < r, s < 1 are fixed numbers. Then

SE(F ) = S2 ∩ {x = t}

for some t, −1 < t < 1. Fix s, and find t as a function fs of r.

F

r

E S (F)

s t

E

Figure 68.4: Circles of latitude

Exercise 68.2 Let E, F be “parallel” circles in the Riemann sphere. What kind
of transformation do you get if you compose SE and SF ?
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Chapter 25

Conformal transformations of
S2

§69 Plan

Our general goal in Chapters 25 - 28 is to study the conformal groups of the
domains

C, S2, B1, H+,

and reduce them to Möbius transformations. These, in turn, can be determined
explicitly.

In this chapter, we will deal with C and S2. We already know that Möbius
transformations are conformal; we will prove the converse for these two domains.
We prove

Conf(C) = Möb(C).

as a crucial step, and

Conf(S2) = M̃öb.

The full Theorem is in §72.

These isomorphisms – plus the corresponding results for B1 and H+ – illustrate
a profound principle of complex analysis (also in higher dimensions):

An analytic object with enough estimates is actually an algebraic object

By analytic, we mean defined via holomorphic functions. By algebraic, we
mean defined via polynomials. The principle pervades complex geometry. The
estimates always start with Cauchy’s integral formula.
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§70 Conformal transformations of C are Möbius

The following result gives a complete characterization of conformal bijections of
C. It is an interesting result in its own right, but it is also the key ingedient for
the next section.

Theorem 70.1 Every conformal bijection of C is given by a Möbius transfor-
mation. That is,

Conf(C) = Möb(C).

A more extended version of this is (just to write down all the isomorphisms we
can) is

Corollary 70.2 We have

Conf(C) = Möb(C) = Sim(C)

Conf+(C) = Möb+(C) = Sim+(C) = Aff(C).

Recall that Sim(C) is the group of similarities of C and Aff(C) is the complex
affine transformations of C. See §8.

The Theorem follows easily from the following well-known result of complex
analysis.

Proposition 70.3 Any holomorphic bijection of C is a complex affine map

h(z) = az + b

where a 6= 0.

This result illustrates perfectly the theme of turning an analytic object (a holo-
morphic function) into an algebraic object (a linear polynomial) by doing enough
complex analysis estimates.

We will give the proof even though this is a standard theorem of complex anal-
ysis.

The proof uses Cauchy’s estimates for the derivatives of a holomorphic function,
and Liouville’s theorem that a bounded entire function is constant. In fact, we
don’t even need Liouville’s theorem because we prove it along the way.

Proof of Proposition 70.3 x

1. Let h be a holomorphic bijection of C.

Let z0 := 1/h−1(0). Then the function

g(z) :=
1

h(1/z)
, z 6= 0, z0,
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is well-defined and holomorphic on its domain.

By Proposition 57.3, h−1 is holomorphic from C to C. In particular, h is bicon-
tinuous. So

lim
z→∞

|h(z)| =∞.

So
lim
z→0
|g(z)| = 0.

So for some small ε > 0, g is bounded and holomorphic on the set

Bε \ {0}.

Then by Cauchy’s Theorem, 0 is a removable singularity. That is, if we assign
g(0) = 0, we get a holomorphic function

g : C \ {z0} → C.

2. Note that this g is injective. It follows that g has a simple zero at 0, that is,

g(z) = g(0) + g′(0)z +O(|z|2)

= cz +O(|z|2)

as z → 0, where
c = g′(0) 6= 0.

(If c were zero, then g(z) would be dominated by some term zm near 0 with
m ≥ 2, and g would not be injective near 0.)

Then as z →∞,

h(z) =
1

g(1/z)

=
1

c/z +O(1/|z|2)

=
z

c+O(1/|z|)

=
z

c
+O(1)

using the fact that c 6= 0.

3. So h grows linearly as z →∞. That is,

|h(z)| ≤ C|z|+ C

for some C > 0. By Cauchy’s estimate, for any z ∈ C,

|h′(z)| ≤ 1

R
sup

|w−z|=R
|h(w)|

≤ sup
|w−z|=R

C|w|+ C

R

=
C(|z|+R) + C

R
.
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Taking R→∞, this implies
|h′(z)| ≤ C

for all z in C. Now Liouville’s theorem says that a bounded entire function
is constant. We can prove this in our case by another application of Cauchy’s
estimate, namely

|h′′(z)| ≤ 1

R
sup

|w−z|=R
|h′(w)|

≤ C

R
.

Taking R→∞, this implies
h′′(z) = 0

for all z in C. So h′(z) is constant. The constant must be

h′(z) =
1

c
6= 0.

So h has the form
h(z) = az + b,

where a = 1/c 6= 0, proving the theorem.

2

Exercise 70.1 Show that an entire function of polynomial growth is a polyno-
mial.

Proof of Theorem 70.1 x

1. Let f be a conformal transformation of C. By Proposition 57.2, f is holo-
morphic or antiholomorphic.

If f is orientation-preserving, then f is holomorphic, so by Proposition 70.3, f
is an affine transformation

f(z) = az + b, a 6= 0.

That is,
Conf+(C) ⊆ Aff(C).

So
Conf+(C) = Aff(C).

2. If f is orientation-reversing, then f is antiholomorphic, so f ◦ C is holomor-
phic, so by Proposition 70.3, f ◦C is an affine transformation. So f = (f ◦C)◦C
has the form

f(z) = az̄ + b, a 6= 0.
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3. In either case, f is a Möbius transformation that preserves C. So

Conf(C) ⊆ Möb(C)

Conversely, every Möbius transformation that preserves C is conformal. So

Conf(C) = Möb(C)

This proves the theorem.

2

Proof of Corollary 70.2 x

From the previous proof, Conf+(C) = Aff(C). From §8,

Möb(C) = Sim(C), Möb+(C) = Sim+(C) = Aff(C).

This yields the Corollary.

2

§71 Conformal transformations of S2 are Möbius

Can every conformal transformation of S2 be written as a Möbius transforma-
tion?

The answer is yes. Recall that M̃öb = σ−1 ◦Möb ◦ σ, where σ is stereographic
projection from the north pole.

Theorem 71.1 Every conformal transformation of S2 is given by a Möbius
transformation. That is,

Conf(S2) = M̃öb.

Again, this illustrates how analytic objects turn out to be algebraic objects. A
conformal map is an analytic object because it is a solution of a partial differen-
tial equation, namely (in coordinates) that Df(x) satisfies Df(x)TDf(x) = λ2I
at every point. A Möbius transformation is an algebraic object, the quotient of
two polynomials.

After we are done proving this, we will permanently identify the two groups and
write

Conf(S2) = Möb

where we use σ to identify S2 with Ĉ.
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Proof x

1. Let F be a conformal bijection of S2. We wish to show F is in M̃öb.

If F is orientation-reversing, then define

G = F ◦ C̃

where C is complex conjugation and C̃ ∈ M̃öb is reflection in a plane. Otherwise
set G = F . Then G is conformal and orientation-preserving. If we can prove
that G ∈ M̃öb, it will follow by composition with C̃ that F ∈ M̃öb, as required.

2. So let us prove that G ∈ M̃öb. Select r̃ in M̃öb+ such that

r̃ : G(N) 7−→ N.

This is possible because M̃öb+ acts transitively on S2. For example, we could
have r̃ be a rotation that takes G(N) to N . Alternately, it follows from Theorem
20.1.

Then set
H = r̃ ◦G

Then
H is conformal and orientation-preserving, H(N) = N.

If we can show that H ∈ M̃öb, it will follow by composition with r̃−1 that
G ∈ M̃öb, as required.

3. So let us show that H ∈ M̃öb. Set

h := σ ◦H ◦ σ−1.

Then h(∞) =∞, and we have a chain of bijections

C S2 \ {N} S2 \ {N} C
σ−1|C

h|C

H|S2\{N} σ|S2\{N}

The three maps across the bottom are conformal. So by Theorem 60.1, h|C is
conformal.

By drawing little counter-clockwise arrows on C and some similar arrows on
S2, and recalling that H is orientation-preserving, it is possible to verify that h
is orientation-preserving. Specifically, whatever σ does to the orientation, σ−1
undoes.

IMAGE: Picture with little counter-clockwise arrows
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Since h|C is orientation-preserving and conformal, Proposition 57.2 implies that

h|C is holomorphic.

So h|C : C→ C is a holomorphic bijection.

4. Then by Lemma 70.3, h|C is a complex affine map, with

h(z) = az + b, z ∈ C,

where a 6= 0. Also h(∞) =∞. So h is a Möbius transformation! So

H = σ−1 ◦ h ◦ σ

lies in M̃öb. But this is just what was required. So all the dominoes fall. So

F ∈ M̃öb.

So every conformal map of S2 to itself is given by a Möbius transformation.

2

§72 Summary of the group isomorphisms for C
and S2

We summarize the results of this Chapter. It is part of what we promised to
prove in §21.

Theorem 72.1 (Transformations of C and S2)

Conf(C) = Möb(C) = Sim(C)

Conf+(C) = Möb+(C) = Sim+(C) = Aff(C),

and

Conf(S2) = Möb,

Conf+(S2) = Möb+ = PSL2(C).

Proof See Corollary 70.2, Theorem 71.1, and Theorem 24.1 c).

2
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Chapter 26

Conformal transformations of
B1 and H+

§73 Plan

Having settled Möb(C) and Möb(S2), we continue the program outlined in §69,
the remainder of which we now outline in more detail.

The two models of the hyperbolic plane that we will study are

• The Poincaré disk model, with underlying point set B1

• The upper half-plane model, with underlying point set H+

So we want to study the groups

Möb(B1), Möb(H+).

The domains are linked by the Cayley transformation j. So they are “holomor-
phically equivalent”. So the groups are the same (recall Thorem 33.1).

We will find for these two domains

a) All conformal transformations are Möbius (as was the case for S2).
b) The groups can be described explicitly.

The concrete plan in Chapters 26 - 28 is as follows.

1) Prove Möb(B1) = Conf(B1).
2) As a corollary, we get Möb(H+) = Conf(H+)

3) Establish Möb+(H+) = PSL2(R).
4) Establish an explicit description of Möb+(B1).

Putting it all together, we will summarize the resulting group isomorphisms in
§81.
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In this Chapter, we will do 1). This continues the theme of showing via complex
analysis estimates that analytic objects are really algebraic.

§74 Conformal transformations of B1

Let us do the same thing for B1 that we did for C and S2, namely show that
all conformal transformations are Möbius transformations.

Theorem 74.1 Every conformal bijection of B1 is given by a Möbius transfor-
mation. So

Conf(B1) = Möb(B1).

Again, we are showing that an analytic object is really an algebraic one.

This time we will hide the analytic work in a well-known complex analysis
theorem.

Theorem 74.2 (Schwarz Lemma) Let f : B1 → C be a holomorphic map
with

|f(z)| ≤ 1 for all z in B1, f(0) = 0.

Then
|f(z)| ≤ |z| for all z in B1,

and
|f ′(0)| ≤ 1.

Moreover, if |f(z)| = |z| for some non-zero z in B1, or |f ′(0)| = 1, then f has
the form

f(z) = az

where |a| = 1.

Besides the application here, the Schwarz Lemma plays a crucial role in the
proof of the Riemann mapping theorem.

Corollary 74.3 Let f : B1 → B1 be a holomorphic bijection with

f(0) = 0.

Then f is a rotation
f(z) = az

where |a| = 1.

Proof x
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Let g = f−1 : B1 → B1. By Proposition 57.3, g is holomorphic. Since |f(z)| ≤ 1
and f(0) = 0, by Schwarz’s Lemma

|f ′(0)| ≤ 1.

Likewise, since |g(z)| ≤ 1 and g(0) = 0, by Schwarz’s Lemma

|g′(0)| ≤ 1.

But by the chain rule,
f ′(0)g′(0) = 1

So
|f ′(0)| = |g′(0)| = 1.

So by the extreme case of Schwarz’s Lemma,

f(z) = az

for some a with |a| = 1.

2

Proof of Theorem 74.1 x

1. First we observe that every Möbius transformation of B1 is conformal on B1.
(It cannot have a pole in B1.) So

Möb(B1) ⊆ Conf(B1).

2. Let f be a conformal bijection of B1.

First assume that f is orientation-preserving. In order to apply the Corollary,
we need f(0) = 0. Now the group of Möbius transformations of B1 is transitive
by the previous section. So we may select g ∈ Möb(B1) such that

g(f(0)) = 0.

Set h = g ◦ f . Then by composition,

h(B1) = B1, h is conformal, h(0) = 0.

So h is holomorphic. So by the Corollary to the Schwarz Lemma,

h(z) = az

for some a 6= 0. So h ∈ Möb(B1). So by composition, f ∈ Möb(B1).

3. Suppose f is orientation-reversing. Now conjugation C(z) = z̄ lies in
Möb(B1), so f ◦ C is lies in Conf(B1) and is orientation-preserving. So f ◦ C
lies in Möb(B1). So f lies in Möb(B1). This covers all cases.
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2

Exercise 74.1 x

1) Show that every conformal transformation of the southern hemisphere is the
restriction of a Möbius transformation.

2) Give an example of a simply connected open set U in S2 such that no confor-
mal transformation of U , other than the identity, is the restriction of a Möbius
transformation. What is Conf(U)? What is Möb(U)?

§75 Conformal transformations of H+

As a Corollary to Theorem 74.1 we obtain

Theorem 75.1 Conf(H+) = Möb(H+).

Proof x

Recall the Cayley transformation

j(z) =
z − i
z + i

from §32. Define

Cj : Möb→ Möb, f 7→ j ◦ f ◦ j−1.

We showed in Theorem 33.1 that

Cj(Möb(H+)) = Möb(B1).

Since j is conformal, effectively the same proof shows

Cj(Conf(H+)) = Conf(B1).

So we get a commutative diagram

Conf(H+) Conf(B1)

Möb(H+) Möb(B1)

≡

≡

⊆ ⊆

where the horizontal maps are bijections. By Theorem 74.1, we have Möb(B1) =
Conf(B1). It follows that Möb(H+) = Conf(H+).

2
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Chapter 27

Algebraic form of elements of
Möb+(H+)

§76 Möb+(H+) is PSL2(R)

Recall that Möb+ = PSL2(C), where the identification is induced by the ho-
momorphism mA : GL2(C)→ Möb+ that turns a 2× 2 invertible matrix into a
Möbius transformation.

Theorem 76.1 Under this identification,

Möb+(H+) = PSL2(R).

That is, f is an orientation-preserving Möbius transformation that preserves
H+ if and only if f can be written with real coefficients.

Proof x

1. First, assume that f ∈ PSL2(R). That is, f can be written

f(z) =
az + b

cz + d

where a, b, c, d ∈ R, ad− bc = 1.

Then f preserves the extended real line. In fact, f is an orientation-preserving
map from R̂ to R̂. This can be seen by computing

f ′(t) =
a

ct+ d
− c(at+ b)

(ct+ d)2

=
ad− bc

(ct+ d)2

> 0
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for t ∈ R, t 6= −d/c. Furthermore, f is orientation-preserving from Ĉ to Ĉ.

2. Now R̂ splits Ĉ into connected open sets

H+, H−,

where H− = H̄+ is the lower half plane. By connectedness and bicontinuity, we
have either

f(H+) = H+, f(H−) = H−

or
f(H+) = H−, f(H−) = H+.

Note that H+ is to the left of R as one moves in the positive direction, and H−
is to the right.

But f preserves the orientation of R̂ and the orientation of Ĉ. Looking left and
right, f takes H+ to itself and H− to itself. We conclude that f ∈ Möb+(H+).
This shows that

PSL2(R) ⊆ Möb+(H+).

3. Conversely, let f ∈ Möb+(H+). Then f has the form

f(z) =
az + b

cz + d

for some a, b, c, d ∈ C, ad− bc 6= 0, and preserves H+.

We wish to show (after multiplying by a common factor) that we can arrange
that a, b, c, d are real and ad− bc = 1. This will show that f ∈ PSL2(R).

It is not hard to find a Möbius transformation g in PSL2(R) such that

g : f(∞) 7−→ ∞.

By Step 1, g is in Möb+(H+). Then set

h := g ◦ f.

Then
h ∈ Möb+(H+), h(∞) = g(f(∞)) =∞.

From these properties, it follows that c = 0 and h can be written as an affine
transformation

h(z) = a′z + b′

where a′ 6= 0. It now easily follows that h has real coefficients. Namely, since h
preserves the extended real line, we get

h(0) = b′ ∈ R, h(1) = a′ + b′ ∈ R,

from which we deduce a′ ∈ R. So h has real coefficients.
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Furthermore, since f(H+) = H+, we easily see that a′ > 0. So we can rewrite
h as

h(z) =

√
a′z + b′/

√
a′

1/
√
a′

=
a′′ + b′′

1/a′′

which has determinant equal to 1. So

h ∈ PSL2(R).

But then
f = g−1 ◦ h ∈ PSL2(R).

So
Möb(H+) ⊆ PSL2(R).

Combining this with Step 2,

Möb(H+) = PSL2(R).

2

Exercise 76.1 Recall

PSL2(R) ⊆ PGL2(R) ⊆ PSL2(C) = Möb+

from Exercise 22.3.

a) Verify that PGL2(R) acts on R̂.

b) Give the world’s simplest fractional linear transformation that is in PGL2(R)
but not in PSL2(R).

c) Which elements of PGL2(R) preserve the orientation of R̂?

d) What do the elements of PGL2(R) \ PSL2(R) do to H+ and H−?

Exercise 76.2 Show that f ∈ Möb(H+) iff either

f(z) =
az + b

cz + d

with ad− bc = 1, or

f(z) =
az̄ + b

cz̄ + d

with ad− bc = −1.
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Chapter 28

Algebraic form of elements of
Möb(B1)

§77 Algebraic form of elements of Möb(B1)

We now derive the general form of an orientation-preserving Möbius transfor-
mation that preserves B1.

Theorem 77.1 The general form of an element of Möb+(B1) is

f(z) =
az + b

b̄z + ā
(77.1)

where a, b ∈ C, |a| > |b|.

By this we mean that every element of the group can be written in this form
(possibly after multiplying the coefficients by the same nonzero constant), and
every map of this form lies in the group.

We can see from this that Möb+(B1) is a three-dimensional group. That means
that it requires three real parameters to specify an element. One might think
it is four real parameters because there are two complex parameters, but note
that if we scale a and b by the same nonzero real number, we get the same
transformation. In this way we can arrange the condition

|a|2 − |b|2 = 1,

and the three-dimensionality is obvious.

Note that this representation is still not completely canonical, since we can still
multiply the coefficients by −1 and get the same transformation.

Theorem 77.1 can be proven in two ways.
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• Conjugation from PSL2(R) via j.
• Directly from the condition f(B1) = B1.

Both methods involve a lot of calculation. But the ideas are very straighforward.

Exercises

Exercise 77.1 Let

f(z) =
az + b

b̄z + ā

as in Theorem 77.1.

Where is the pole of f? Where are its fixed points?

Exercise 77.2 Prove that the general form of an element of Möb(B1) (no ori-
entation restriction) is

f(z) =
az + b

b̄z + ā
or f(z) =

az̄ + b

b̄z̄ + ā

where a, b ∈ C, |a| > |b|.

§78 Explicit form of the isomorphism Möb+(H+)→
Möb+(B1)

Given f in Möb+(H+), let us calculate h = Cj(f) explicitly. We’ll use the result
in the next section.

Proposition 78.1 Let j be the Cayley transformation. The conjugation iso-
morphism

Cj : Möb+(H+)→ Möb+(B1), f 7→ j ◦ f ◦ j−1

takes the element
f(z) =

pz + q

rz + s
,

p, q, r, s ∈ R, ps− qr = 1 of Möb(H+) to the element

h(z) =
az + b

b̄z + ā
,

a, b ∈ C, |a|2 − |b|2 = 1 of Möb(B1), where

a =
1

2
((p+ s) + i(q − r)), b =

1

2
((p− s) + i(−q − r)).
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Interestingly, the map from Möb(H+) to Möb(B1) is linear, when expressed
using the coefficients. Why should this be? Well, elements of PSL2(C) can be
represented by matrices, and conjugation is the map

M 7→ NMN−1.

For a fixed conjugator N , this map is linear in the entries of M .

Proof x

1. It is easiest to do this using matrix representatives of the elements. Let

f(z) =
pz + q

rz + s
,

be an arbitrary element of Möb+(H+) = PSL2(R). Then

f ∼
(
p q
r s

)
where we use ∼ to mean that f is represented by the given matrix as in §22.
Also

j(z) =
z − 1

z + i

is represented via

j ∼
(

1 −i
1 i

)
.

So

j−1 ∼
(

1 −i
1 i

)−1
=

1

2i

(
i i
−1 1

)
.

Then

j ◦ f ◦ j−1 ∼ 1

2i

(
1 −i
1 i

)(
p q
r s

)(
i i
−1 1

)
=

1

2i

(
p− ir q − is
p+ ir q + is

)(
i i
−1 1

)
=

1

2i

(
ip+ r − q + is ip+ r + q − is
ip− r − q − is ip− r + q + is

)
=

1

2

(
p+ iq − ir + s p− iq − ir − s
p+ iq + ir − s p− iq + ir + s

)
.

So

h(z) = (j ◦ f ◦ j−1)(z) =
az + b

b̄z + ā

where
a =

1

2
((p+ s) + i(q − r)), b =

1

2
((p− s) + i(−q − r)).
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2. The transformation h will be invertible because f is invertible, and the
condition ps− qr = 1 becomes

det

(
a b
b̄ ā

)
= det

(
1 −i
1 i

)(
p q
r s

)(
1 −i
1 i

)−1
= det

(
p q
r s

)
= ps− qr
= 1,

that is,
|a|2 − |b|2 = 1.

2

§79 First proof of the Theorem

First proof of Theorem 77.1 x

1. Most of the work has already been done in Proposition 78.1. We need only
prove that Cj is surjective onto the appropriate group.

Set
G :=

{
f(z) =

az + b

b̄z + ā
: a, b ∈ C, |a|2 − |b|2 > 0

}
.

Because we can scale the coefficients of f without changing f , we have

G =

{
f(z) =

az + b

b̄z + ā
: a, b ∈ C, |a|2 − |b|2 = 1

}
.

In Theorem 33.1 and Proposition 78.1, we established

Möb(B1) = Cj(Möb(H+)) ⊆ G.

So we need only prove
G ⊆ Cj(Möb(H+)).

Let h ∈ G. We must find f ∈ Möb+(H+) = PSL2(R) such that

h = Cj(f).

Now
h(z) =

az + b

b̄z + ā

where
a, b ∈ C, |a|2 − |b|2 = 1.
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We wish to find
f(z) =

pz + q

rz + s
,

where
p, q, r, s ∈ R, ps− qr = 1,

such that h = j ◦ f ◦ j−1. From Proposition 78.1, it suffices to solve

a =
1

2
((p+ s) + i(q − r)), b =

1

2
((p− s) + i(−q − r))

for p, q, r, s in terms of a, b, and check the determinant condition.

2. This is easily done. These equations are equivalent to

a+ b = p− ir, a− b = s+ iq

which immediately gives the values of p, q, r, s, namely

p =
1

2
(a+ ā+ b+ b̄), r = − 1

2i
(a− ā+ b− b̄),

s =
1

2
(a+ ā− b− b̄), q =

1

2i
(a− ā− b+ b̄).

Recalling the proof of Proposition 78.1, we find

ps− qr = |a|2 − |b|2 = 1.

So f ∈ PSL2(R). So the map Cj is surjective from PSL2(R) to G. So

Möb(B1) = Cj(Möb(H+)) = Cj(PSL2(R)) = G.

2

§80 Second proof of the Theorem

Second proof of Theorem 77.1 x

Suppose

f(z) =
az + b

cz + d

where a, b, c, d ∈ C, ad − bc 6= 0. We will compute directly the conditions on
a, b, c, d that correspond to the constraint f(B1) = B1.

This is a bit messy, till I come up with something better.

1. First let us show that (77.1) implies f ∈ Möb+(B1). So assume

f(z) =
az + b

b̄z + ā
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where a, b ∈ C, |a| > |b|.
Suppose |u| = 1. Then

|b̄u+ ā| = |bū+ a|
= |u||bū+ a|
= |b+ au|.

Since |b| 6= |a|, this quantity is not zero, and we get

|f(u)| = |au+ b|
|b̄u+ ā|

= 1.

That is, f(S1) ⊆ S1. Now,

f−1(z) =
āz − b
−b̄z + a

so by the same argument, f−1(S1) ⊆ S1. Since f is bijective, we conclude that
f maps S1 bijectively to S1.

Since f is a homeomorphism from Ĉ to Ĉ, either f takes B1 to B1 or f exchanges
B1 with the complement of B̄1 in Ĉ. But

|f(0)| =
∣∣∣∣ bā
∣∣∣∣ =
|b|
|a|

< 1

by the assumption |b| < |a|, so f(B1) = B1. So

f ∈ Möb+(B1),

as desired. This shows that the form (77.1) is sufficient for membership in the
group.

2. Next let us show that f ∈ Möb+(B1) implies that f can be written in the
form (77.1).

Let f ∈ Möb+(B1). Then

f(z) =
az + b

cz + d

where ad− bc 6= 0, and f(B1) = B1.

How does this constrain a, b, c, d?

Since f(B1) = B1, we must have f(S1) = S1. So

|f(u)| = 1

for any u with |u| = 1. It follows that for all such u,

|au+ b|2 = |cu+ d|2
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i.e.
|a|2 + |b|2 + aub̄+ āūb = |c|2 + |d|2 + cud̄+ c̄ūd.

This is a linear condition on u, which contrasts with the quadratic condition
|u|2 = 1 that defines u. Let us exploit this. Rearranging, we find

|a|2 + |b|2 − |c|2 − |d|2 = 2 Re((ab̄− cd̄)u).

Set
e := ab̄− cd̄, s := |a|2 + |b|2 − |c|2 − |d|2.

Then we find that
Re(eu) = s/2

for all u ∈ S1. But if e 6= 0, the set

eu, u ∈ S1

is a circle of positive radius. This cannot be contained in the line defined by
Re(z) = s/2. So we must have e = 0. It follows that s = 0. So

ab̄ = cd̄, |a|2 + |b|2 = |c|2 + |d|2.

3. From this we get
|a||b| = |c||d|

and by adding these or subtracting these from the previous equation, we get

(|a|+ |b|)2 = (|c|+ |d|)2, (|a| − |b|)2 = (|c| − |d|)2

from which we conclude
|a|+ |b| = |c|+ |d|

and either
|a| − |b| = |c| − |d| or |a| − |b| = |d| − |c|

Adding and subtracting these from the previous equations, we get either

(|a| = |c|) & (|b| = |d|) or (|a| = |d|) & (|b| = |c|).

4. In the former case, we get

|f(0)| =
∣∣∣∣ bd
∣∣∣∣ = 1

which contradicts f(B1) = B1. So we have

|a| = |d| and |b| = |c|.
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5. Again we compute |f(0)|, and we obtain

|f(0)| =
∣∣∣∣ bd
∣∣∣∣

which must be less than 1 since f(B1) = B1. So

|b| = |c| < |a| = |d|.

This gives us the required inequality on |a| and |b|. We only need to determine
c and d.

6. Note that a, d 6= 0. By multiplying the numerator and denominator of (77.1)
by a suitable v of modulus 1, we can arrange that

a

d̄
> 0.

Since |a| = |d|, this yields a/d̄ = 1 or

d = ā.

If b, c 6= 0, then returning to ab̄ = cd̄, we get

c

b̄
=
a

d̄
= 1

so
c = b̄.

If b = c = 0, we get the same thing. So in all cases, we get

f(z) =
az + b

b̄z + ā

where a, b ∈ C. Recall that |a| > |b|. So being writable in the form (77.1) is
necessary for membership in the group.

2

§81 Summary of the group isomorphisms for H+

and B1

We summarize the results of Chapters 26 - 28. It is more of what we promised
to prove in §21. Only the hyperbolic isometries are missing.

Theorem 81.1 (Transformations of H+ and B1) x
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Möb(B1) Möb(H+)

Conf(B1) Conf(H+)

∼=

∼=

G Möb+(B1) Möb+(H+) PSL2(R)

Conf+(B1) Conf+(H+)

∼=

∼=

where
G :=

{
f(z) =

az + b

b̄z + ā
: a, b ∈ C, |a|2 − |b|2 > 0

}
.

Proof It summarizes Theorem 33.1, Theorem 74.1, Corollary 75.1, Theorem
76.1, and Theorem 77.1.

2

Here are some final remarks, now that we’ve seen the proofs.

1) The fact that conformal = Möbius is easier to prove for B1. Then we trans-
ferred it to H+.

2) The algebraic form of elements of the Möbius group is easier to determine in
H+. Then we transferred it to B1.

3) It is also possible to identify the algebraic form of elements of the Möbius
group of B1 directly.
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Chapter 29

Some explicit transformations
of B1

§82 The Apollonian slide

We aim to present a family Kt, −1 < t < 1, of Möbius transformations of B1

that “slide” along the x-axis from −1 to 1. We call them Apollonian slides.1

Recall the Apollonian circles from §12. In that section, we claimed (without
proof) that there exist hyperbolic Möbius transformations that look like this.

Figure 82.1: A hyperbolic transformation (WillowW, Pbroks13, Wikipedia)

In the picture, the red curves are the clines that pass through both 1 and
−1. The depicted transformation moves points from −1 (the source) a certain

1Non-standard terminology
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distance along the red clines toward 1 (the sink). It takes the real axis to itself,
and also preserves the circle S1. So it takes B1 to itself bijectively.

Let’s go ahead and give the formula for this transformation, then state its prop-
erties, then explain how we got the formula and prove the properties.

Fix −1 < t < 1. Define1

Kt(z) :=
z + t

tz + 1
, z ∈ B1.

It has the following properties. Define the line segment L := R ∩ B1 sitting
inside B1.

Proposition 82.1 Let −1 < t < 1. Then

1) Kt is Möbius.
2) Kt(B1) = B1.
3) Kt is orientation-preserving.
4) Kt(−t) = 0, Kt(0) = t.
5) Kt(−1) = −1, Kt(1) = 1.
6) Kt(L) = L.

We will prove this below.

By 1), 2), and 3),

Kt ∈ Möb+(B1)

Here is a picture of its action on B1 in the case t > 0. It can be described as
follows: it “slides” the points of B1 along Apollonian arcs from −1 to 1.

1One may compare the form of Kt to the elliptic “Cayley-like” transformation r1(z) =

(z − i)/(−iz + 1) of §34, which“rotates” Ĉ around the two fixed points −1, 1.
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Figure 82.2: The motion of Kt from −1 to 1 (WillowW, Pbroks13, Wikipedia, modi-
fied)

Finding Kt

How could we find such a formula, that yields a transformation that looks like
the picture?

One way to do it is by brute-force calculation. Use the conditions

Kt(−1) = −1, Kt(1) = 1, Kt(B1) = B1

to narrow down the coefficients of Kt. This method works, but gives little
insight. See Exercise 83.1.

We’ll do it differently, more elegantly. First observe that Kt must be a hyper-
bolic transformation because it fixes two points, and does not spiral. Our model
for a hyperbolic transformation is

Mλ(z) = λz,

where λ > 0. As defined in §28, a transformation is hyperbolic if it is conjugate
to Mλ for some λ > 0.

Now, Mλ preserves the upper half-plane H+. Recall that the Cayley transform

j(z) =
z − i
z + i

of §32 takes H+ bijectively to B1. It is depicted below. The red dot goes to the
red dot.
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−→

Figure 82.3: Cayley transformation (KSmrq, Wikipedia, modified)

It follows that the transformation

f = j ◦Mλ ◦ j−1

will automatically be a hyperbolic Möbius transformation that preserves B1.

Let us calculate f , then use it to create a Kt that satisfies the Proposition.

Calculate f

We want to compute

f = j ◦Mλ ◦ j−1.

Let us use matrices to do this. The transformations j and Mλ are represented
by matrices via

j ∼
(

1 −i
1 i

)
and Mλ ∼

(
λ 0
0 1

)
,

so f is represented via

f ∼
(

1 −i
1 i

)(
λ 0
0 1

)(
1 −i
1 i

)−1
=

(
λ −i
λ i

)(
i i
−1 1

)
· 1

2i

=

(
iλ+ i iλ− i
iλ− i iλ+ i

)
· 1

2i

=
1

2

(
λ+ 1 λ− 1
λ− 1 λ+ 1

)
.
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We may drop the factor of 1/2 because it does not affect the final Möbius
transformation. We get

f(z) =
(λ+ 1)z + (λ− 1)

(λ− 1)z + (λ+ 1)

=
z + t

tz + 1

where
t =

λ− 1

λ+ 1
.

Note that the range 0 < λ < ∞ corresponds to the range −1 < t < 1. Let us
rename f as Kt, and we have derived Kt.

Proving the Proposition

Proof of Proposition 82.1x We are now in a position to verify properties 1)
- 6) of Proposition 82.1. They are either trivial, or follow by conjugation.

1) Clearly Kt is Möbius.

2) Since
Mλ(H+) = H+

and j maps H+ bijectively to B1, it follows that

Kt(B1) = B1.

3) Clearly Kt is orientation-preserving.

4-5) By substitution,
Kt(−t) = 0, Kt(0) = t

and
Kt(−1) = −1, Kt(1) = 1.

The latter can also be seen by conjugation, since j takes the fixed points 0 and
∞ of Mλ to fixed points −1 and 1 of Kt.

6) Kt preserves each of R̂ and B1, so it preserves L = R ∩B1.

2

§83 Some exercises

The first exercise asks you to obtain the results of the previous section by pure
calculation.
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Exercise 83.1 (Pure calculation) x

a) By brute calculation, find the general form of an orientation-preserving Möbius
transformation f satisfying

f(−1) = −1, f(1) = 1, f(B1) = B1.

Hint: Show that these conditions imply that f preserves the extended real line.

b) By brute calculation, prove that for each −1 < t < 1, the transformation

Kt(z) =
z + t

tz + 1
, z ∈ B1,

satisfies properties 1)-6) of Proposition 82.1.

In the following exercise, we consider what happens if t lies outside the permitted
range −1 < t < 1.

Exercise 83.2 (Parameter t out of range) x

a) Observe that for −1 < t < 1, Kt(R̂) = R̂.

b) What does Kt do with H+?

c) Where is the pole of Kt, anmd where is its image?

d) What does Kt do if t < −1 or t > 1?

The parameter t has an easy interpretation via Kt(0) = t. But from a group-
theoretical point of view, it is a bad choice. Indeed, if we compose Kt with Ks,
the expression gets very complicated. The following exercise allows us to finesse
this.

Exercise 83.3 (One-parameter subgroup) x

a) For any s, t, there is u such that Ks ◦Kt = Ku. Find u in terms of s, t.

b) A one parameter subgroup in a group G is a function h : R→ G such that

h(s+ t) = h(s)h(t), s, t ∈ R.

Reparametrize the family Kt as a new family Ǩt which is a one parameter
subgroup. Hint: consider log(λ).

In the next exercise, we ask: what happens if we iterate Kt?

Calculate:

Kt(0) = t, Kt(Kt(0)) =
2t

t2 + 1
, Kt(Kt(Kt(0))) = . . .

The expressions get more and more complicated, but (if t > 0) they keep in-
creasing. The following exercise asks you to prove this, and find the limit as the
number of iterates goes to infinity.
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Exercise 83.4 (Iterating Kt) Let t > 0.

a) Prove that Kt(s) > s for all s in (−1, 1).

b) Prove that for z ∈ B1,

lim
n→∞

Kn
t (z) = 1, lim

n→−∞
(Kt)

−n = −1.

(Hint: You could use the one-parameter subgroup formulation of Exercise 83.3.
Or not.)

This result confirms that Kt moves the points of B1 to the right in a nonlinear
way, and −1 is a source, +1 is a sink, as we previously suggested.

● ● ● ●●

0 t
2t

t  +12

Figure 83.1: The iterates 0, Kt(0), Kt(Kt(0)), etc.

The next exercise verifies Figure 82.1, showing that Kt respects the Apollonian
circles.

For the exercise, let

A = {clines through −1 and 1} (red curves)

B = {clines orthogonal to S1 and R} (blue curves)

Together, they are the Apollonian circles.
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Figure 83.2: The Apollonian circles again (WillowW, Pbroks13, Wikipedia)

Exercise 83.5 (Preserving the Apollonian circles) x

a) Observe that the families A and B are the image under j of two obvious
families of clines in H+.

b) Show that the clines in A are orthogonal to the clines in B.
c) Show that Kt preserves each cline in A. If t > 0, show that Kt slides each
cline in A from −1 toward 1. (Hint: look at K ′t(−1) and K ′t(1).)

d) Show that Kt permutes the clines in B. If t > 0, and C is a cline in B, then

Kn
t (C)

converges to 1 as n→∞.

So the arrows in Figure 82.1 are appropriate. These arrows flow along the clines
of A. They preserve the real line, and preserve the upper and lower boundary
semicircles of B1.

The final exercise asks for another proof of the transitivity of the action of
Möb+(B1) on B1 (see Theorem 47.1).

Exercise 83.6 Use Rθ and Kt to prove Möb+(B1) acts transitively on B1.

§84 An Apollonian slide in any direction

We will define an Apollonian slide along any line through 0.

Fix b ∈ B1. If b 6= 0, let L′b be the line determined by 0 and b, and define the
segment

Lb := B1 ∩ L̃′b
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with endpoints

b− = − b

|b|
, b+ =

b

|b|

lying on S1. Note that L0 is not defined, and Lt = L if t ∈ (−1, 1), t 6= 0.

L b
●

●

b

b

+

-

b

Figure 84.1: The segment Lb

We would like to define a slide along Lb. The natural guess is to replace t by
b in the expression for Kt. This does not quite work; this will come out below.
Here is the correct definition.

For b ∈ B1, define

Kb(z) :=
z + b

b̄z + 1
, z ∈ B1.

Note that K0 is the identity.

We will prove the following proposition. It says that Kb has the same properties
as Kt, just rotated.

Proposition 84.1 Let b ∈ B1.

1) Kb is Möbius.
2) Kb(B1) = B1.
3) Kb is orientation-preserving.
4) Kb(−b) = 0, Kb(0) = b.

If b 6= 0,

5) Kb(b−) = b−, Kb(b+) = b+.
6) Kb(Lb) = Lb.

197 Table of Contents



PART II CHAPTER 29. EXPLICIT TRANSFORMATIONS OF B1

By 1), 2), and 3),

Kb ∈ Möb+(B1)

Here is what it looks like.

Figure 84.2: The motion of Kt from −1 to 1 (WillowW, Pbroks13, Wikipedia, modi-
fied)

Finding Kb

How do we get the form of Kb?

The obvious thing to do is to conjugate Kt by a rotation Rθ. This should give
a hyperbolic motion along the segment Rθ(L).

According, let b ∈ B1 and write

b = eiθ|b|

for some θ. Define

f = Rθ ◦K|b| ◦R−θ.
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Let us compute f . We get

f(z) = (Rθ ◦K|b| ◦R−θ)(z)
= (Rθ ◦K|b|)(e−iθz)

= Rθ

(
e−iθz + |b|
|b|e−iθz + 1

)
= eiθ

(
e−iθz + |b|
|b|e−iθz + 1

)
=

z + |b|eiθ

|b|e−iθz + 1

=
z + b

b̄z + 1
.

We take this as the definition of Kb.

Proving the proposition

Proof of Proposition 84.1 x

So Kb operates as follows:

Rotate Lb so it becomes L, move along L by L|b|, rotate L back to Lb.

Geometrically, the way Kb acts on B1 is just the same as the way K|b| acts on
B1, but rotated by θ. In other words, to get a picture of the Kb action, rotate
the K|b| picture by θ.

In particular, Kb slides everything from b− along Lb towards b+.

Properties 1)-6) now follow from the corresponding properties of Kt.

2

Exercise 84.1 Prove the Proposition by pure calculation.

Exercise 84.2 Conjugate Kt and Rθ by various Kb’s to construct various new
elliptic and hyperbolic transformations of B1. Describe their action on B1.

§85 Factorization and generators

We are now in a position to factor elements of Möb+(B1) in a convenient way.
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Proposition 85.1 Every element of Möb+(B1) can be written in the form

f(z) = eiθ
z + b

b̄z + 1
, z ∈ B1,

that is, there are b ∈ B1 and θ ∈ R such that

f = Rθ ◦Kb.

Recall from §77 that Möb+(B1) is a three-dimensional group. The factorization
exhibits the three parameters of the group in a different way.

As a corollary, we get generators for Möb+(B1).

Corollary 85.2 Möb+(B1) is generated by Rθ and Kt, where θ ∈ R and −1 <
t < 1.

Note that the generators are Kt, not Kb.

The proofs follow.

Proof of Proposition 85.1 Let f ∈ Möb+(B1). By Theorem 77.1,

f(z) =
az + b

b̄z + ā

with a, b ∈ C, |a| > |b|. So a 6= 0. Dividing on top and bottom by |a|, we may
assume that a = eiφ for some φ ∈ R. So

f(z) =
eiφz + b

b̄z + e−iφ

= e2iφ
z + e−iφb

eiφbz + 1

= eiθ
z + b′

b̄′z + 1

where θ = 2φ, b′ = e−iφb.

2

Proof of Corollary 85.2 xLet f ∈ Möb+(B1). By the previous Proposition,

f = Rθ ◦Kb

where b ∈ B1, θ ∈ R. Write b = |b|eiψ for some ψ. Then recalling the construc-
tion of Kb,

f = Rθ ◦ (Rψ ◦K|b| ◦R−ψ)

which proves that the result.

2

Exercise 85.1 If we restrict 0 ≤ θ < 2π, to what extent is the factorization in
Proposition 85.1 unique?
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Chapter 30

Triple transitivity

§86 Triple transitivity of Möb+ on Ĉ

We will prove triple transitivity. The action of the Möbius group is not just
transitive on S2, but very transitive.

Theorem 86.1 (Triple transitivity) x

1) The action of Möb+ on Ĉ is triply transitive, meaning if

z1, z2, z3 ∈ Ĉ

are distinct points, and
w1, w2, w3 ∈ Ĉ

are distinct as well, then there is a transformation f ∈ Möb+ with

f(z1) = w1, f(z2) = w2, f(z3) = w3. (86.1)

2) Subject to these conditions, f is unique.

z1 ●

z2 ●

z3 ●

● w1

● w2

● w3

Figure 86.1: Triply transitive

201 Table of Contents



PART II CHAPTER 30. TRIPLE TRANSITIVITY

Proof x

1. The points z1, z2, z2 and w1, w2, w3 are given. We must find a unique f in
Möb+ that satisfies (86.1).

Let us first assume
z3 = w3 =∞.

Then f must satisfy
f(∞) =∞.

So f is an affine transformation, and will have the form

f(z) = az + b.

Since z1 6= z2 and w1 6= w2, it is geometrically clear that there is an orientation-
preserving similarity transformation such that

f(z1) = w1, f(z2) = w2. (86.2)

Just use a for an appropriate scaling and rotation, and b for an appropriate
translation.

z1 ●

z2 ●

● w1

● w2

Figure 86.2: The affine group is doubly transitive on C

Algebraically, we get

az1 + b = w1, az2 + b = w2.

Because z1 6= z2, these are two independent linear equations for two unknowns
(namely a and b), so it has a unique solution, namely

a =
w1 − w2

z1 − z2
, b =

z1w2 − z2w1

z1 − z2
.

So f exists. These values are forced, so f is unique. We have proven the
Theorem under the assumption z3 = w3 =∞.

2. Now let z1, z2, z2 and w1, w2, w3 be fully general. We wish to show that there
is a unique f in Möb+ such that (86.1) is satisfied.
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We know from Theorem 20.1 that Möb+ acts transitively on Ĉ. So we can select

g, h ∈ Möb+

such that
g(∞) = z3, h(w3) =∞.

Set
k = h ◦ f ◦ g.

Then equation (86.1) is equivalent to

k(z′1) = w′1, k(z′2) = w′2, k(∞) =∞, (86.3)

where
z′1 = g−1(z1), z′2 = g−1(z2)

and
w′1 = h(w1), w′2 = h(w2).

But by Step 1, equation (86.3) has a unique solution k in Möb+. So equation
(86.1) has a unique solution h in Möb+.

2

Exercise 86.1 x

(a) Identify PSL2(C) with the set of all injective maps of the set {0, 1, 2} into
S2.

(b) Show that PSL2(C) is homeomorphic to an open subset U of S2 × S2 × S2.
What is its dimension?

(c) What set is excluded? What is the dimension of the excluded set?

(d) Is PSL2(C) connected?

Recall Theorem 48.1, which states that Möb+ is transitive on clines.

Exercise 86.2 Give new proof of Theorem 48.1 using the triple transitivity of
Möb+ together with Proposition 36.2.

Of course, there are many maps taking one cline to another, because we can
take any three points on E to any three points on F .

§87 Double triple transitivity of Möb on Ĉ

If we add in the orientation-reversing Möbius transformations, then we get two
maps that take the first triple to the second triple. We call this “double triple
transitivity”.
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Theorem 87.1 (Double triple transitivity) Let

z1, z2, z3, w1, w2, w3,

be triples of distinct points. Then there exist exactly two maps h in Möb satis-
fying

h(z1) = w1, h(z2) = w2, h(z3) = w3, (87.1)

namely
f and SC ◦ f,

where f is the element of Möb+ provided by Theorem 86.1, and SC is the in-
version in the cline C determined by w1, w2, w3.

We call it “double triple transitivity” because there are two elements that per-
form the triple transitivity.

Proof x

1. f satisfies (87.1) by construction. By Theorem 86.1, it is the only element in
in Möb+ that does so.

2. C exists and is unique by Proposition 36.2. Then SC fixes each point of C.
So Sc ◦ f satisfies (87.1).

3. We will check that Sc ◦ f is the unique element in Möb \Möb+ that satisfies
(87.1).

Suppose h, h′ ∈ Möb \Möb+ satisfy (87.1). Then h′ ◦ h−1 lies in Möb+ and
h′ ◦ h−1 fixes z1, z2, z3. Then by Theorem 86.1, h′ ◦ h−1 = id. So h = h′. This
proves the desired uniqueness.

2

§88 Triple transitivity of Möb(B1) on S1

Note that Möb(B1) takes S1 to itself, because S1 is the boundary of B1 and
Möb(B1) takes B1 to itself.

Theorem 88.1 (Triple transitivity of Möb(B1) on S1) The action of Möb(B1)
on S1 is triply transitive.

Proof x

1. Let
z1, z2, z3
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be distinct points on S1. Let
w1, w2, w3

be another set of distinct points on S1. By Theorem 86.1, there exists f in
Möb+ such that

f(z1) = w1, f(z2) = w2, f(z3) = w3.

Since f takes clines to clines and S1 is a cline through z1, z2, z3, it follows that
f(S1) is a cline through w1, w2, w3. Since a cline through three distinct points
is unique,

f(S1) = S1.

2. We must additionally arrange that f ∈ Möb(B1).

The circle S1 separates Ĉ into two open sets, namely

U := B1 and V := Ĉ \ B̄1.

So f either preserves each of U and V , or exchanges them.

Case 1: Suppose f preserves each of U and V . Then f ∈ Möb(B1) and we are
done.

Case 2: Suppose f exchanges U and V . Then g := S ◦ f preserves each of U
and V , where S is inversion in S1. Then

g ∈ Möb(B1).

Also
g(zi) = S(f(zi)) = S(wi) = wi

for i = 1, 2, 3. Replacing f by g, we are done.

2

§89 Half triple transitivity of Möb+(B1) on S1

The group Möb+(B1) is not triply transitive on S1, but if the two triples are
ordered in the same direction as you go around S1, we can make it work.

Let z1, z2, z3 be three distinct points in S1. We say they are positively ordered
if the sequence

z1 → z2 → z3

goes counterclockwise around the circle. We say they are negatively ordered if
the sequence

z1 → z2 → z3

goes clockwise around the circle.
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Theorem 89.1 (Half triple transitivity) Möb+(B1) acts transitively on pos-
itively ordered point triples in S1.

We call this “half triple transitivity” because Möb+(B1) is transitive on only
half of the point triples.

An easy consequence is this:

Corollary 89.2 (Double transitivity) Möb+(B1) acts doubly transitively on
S1.

To prove these results, we will need the following Lemma.

Lemma 89.3 Let z1, z2, z3 in S1 be distinct. Let f ∈ Möb(B1).

i) If f is orientation-preserving, then f preserves the ordering of z1, z2, z3, that
is,

f(z1), f(z2), f(z3) has the same ordering as z1, z2, z3.

ii) If f is orientation-reversing, then f reverses the ordering of z1, z2, z3, that
is,

f(z1), f(z2), f(z3) has the opposite ordering to z1, z2, z3.

Proof of Lemma x

The proposition is geometrically obvious.

Alternately, i) follows from the fact that Möb+(B1) is generated by rotations and
Apollonian slides (see Corollary 85.2), and each of these preserves the ordering
of point triples on S1.

Then ii) follows from i) because elements of Möb(B1)\Möb+(B1) have the form

C ◦ f,

where C is complex conjugation and f ∈ Möb+(B1), and C reverses the ordering
of point triples.

2

Proof of Theorem 89.1 x

1. Let z1, z2, z3 be a positively ordered point triple, and let f be an element of
Möb+(B1). Then by i) of the Lemma, f(z1), f(z2), f(z3) is positively ordered.
So Möb+(B1) acts on the positively ordered point triples.

2. Let z1, z2, z3 and w1, w2, w3 be positively ordered point triples. By Theorem
88.1, there exists f in Möb(B1) such that

f(z1) = w1, f(z2) = w2, f(z3) = w3.
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By ii) of the Lemma, f must be orientation-preserving (otherwise it would
reverse the ordering). So f lies in Möb+. So

f ∈ Möb(B1) ∩Möb+ = Möb+(B1).

So Möb+(B1) acts transitively on positively ordered point triples in S1.

2

Proof of Corollary 89.2 x

Let z1, z2 be a pair of distinct points on S1. Let z′1, z′2 be another such pair.
Select points z3, z′3 on S1 such that the triples

z1, z2, z3; z′1, z
′
2, z
′
3,

are positively ordered. Then by half triple transitivity, there exists f in Möb+(B1)
that takes

z1 7→ z′1, z2 7→ z′2, z3 7→ z′3.

2

Remark: There is a lot of freedom in selecting the supplementary points z3, z′3,
so the map f is far from unique.

§90 Some exercises

Exercise 90.1 Let z1, z2, z3 be distinct points on S1. Can you construct an
algebraic test that determines whether they are positively or negatively ordered?

The following exercise explores the topology of the groups Möb(B1) and its
subgroup Möb+(B1) ∼= PSL2(R).

Exercise 90.2 x

a) Identify Möb(B1) with the set of all injective maps of the set {0, 1, 2} into
S1.

b) Show that Möb(B1) is homeomorphic to an open subset of the 3-torus S1 ×
S1 × S1. What set is excluded?

c) The 3-torus has the advantage that you can visualize it. It is just a cube with
its sides suitably identified. Try to draw a picture of the topology of Möb(B1).

d) Is Möb(B1) connected? Is PSL2(R) connected? Simply connected?

In the following exercise, we transfer our results to the extended real number
line R̂.
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Exercise 90.3 Prove that PSL2(R) = Möb+(H+) acts transitively on “pos-
itively ordered” triples of distinct points on the extended real number line R̂.
(You will have to define this concept).

For the following exercise, define

Möb(R) = {f ∈ Möb : f(R) = R}

Exercise 90.4 x

a) What is the index of PSL2(R) in Möb(R)?

b) Determine all groups that lie strictly between PSL2(R) and Möb(R).

c) How transitive are all these groups on S1?

d) How can we produce the Klein 4-group from this situation?

Here are some hints.

1) Recall that PSL2(R) = Möb+(H+) and Möb+(H+) is an index-two subgroup
of Möb(H+).

2) Recall from Exercises 22.3 and 76.1 that PSL2(R) is an index-two subgroup
of PGL2(R).

3) Consider whether a given element f of Möb(R) i) preserves the orientation
of R̂, ii) preserves the orientation of Ĉ, ii) preserves H+, and how these three
conditions relate.

You should get a diagram that looks like this:

X

PSL2(R) Y Möb(R)

Z

⊆⊆

⊆
⊆ ⊆

⊆

Figure 90.1: Intermediate groups
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Chapter 31

The cross-ratio

§91 The cross-ratio and its symmetries

We now come to an all-important invariant of Möb+ transformations called the
cross-ratio.

Definition 91.1 Let z1, z2, z3, z4 ∈ Ĉ be distinct. We define their cross-ratio
by

[z1, z2; z3, z4] :=
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
.

If one argument is ∞, we cross out the factors where ∞ appears. For example:

(z1 −∞)(z2 − z4)

(z2 −∞)(z1 − z4)
=
z2 − z4
z1 − z4

which has only finite numbers.

The cross-ratio is sort of miraculous, but it will take some investigation to see
this.

The symmetries of the cross-ratio

The cross-ratio has a lot of symmetries.

Proposition 91.2

[A,B;C,D] = [B,A;D,C] = [C,D;A,B] = [D,C;B,A].

The proof is trivial.
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The proposition says: We can switch the first two and the last two, or the first
two with the last two. More precisely:

i) Switch positions 1↔ 2, 3↔ 4, no change.

ii) Switch 1↔ 3, 2↔ 4, no change.

This pattern explains the location of the semicolon.

If we define λ := [A,B;C,D], then we have further (table from Wikipedia)

Proposition 91.3

[A,B;C,D] = [B,A;D,C] = [C,D;A,B] = [D,C;B,A] = λ

[A,B;D,C] = [B,A;C,D] = [C,D;B,A] = [D,C;A,B] =
1

λ
[A,C;B,D] = [B,D;A,C] = [C,A;D,B] = [D,B;C,A] = 1− λ

[A,C;D,B] = [B,D;C,A] = [C,A;B,D] = [D,B;A,C] =
1

1− λ

[A,D;B,C] = [B,C;A,D] = [C,B;D,A] = [D,A;C,B] =
λ− 1

λ

[A,D;C,B] = [B,C;D,A] = [C,B;A,D] = [D,A;B,C] =
λ

λ− 1
.

So the 24 permutations of A,B,C,D fall into 6 groups of 4, each of which has
the same effect on the value. So there are only 6 possible values for the cross-
ratio of A,B,C,D, depending on the order, and they can all be calculated from
each other.

Proof of Proposition 91.3 x

The new rules can be summarized as follows:

iii) Switch 1↔ 2 or 3↔ 4, send λ to 1/λ.

iv) Switch 2↔ 3 or 1↔ 4, send λ to 1− λ
The proof of rules iii)-iv) is trivial. The special case where one of the inputs is
∞ must be verified separately.

Together with rules i)-ii), rules iii)-iv) yield the first three rows of the table; the
final three rows follow by using these rules more than once.

2

Forbidden values of the cross-ratio

Proposition 91.4 If z1, z2, z3, z4 are distinct, then

[z1, z2; z3, z4] 6= 0, 1,∞.
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Proof x

1. It is obvious that [z1, z2; z3, z4] 6= 0,∞ because the numbers are all distinct.

2. If
[z1, z2; z3, z4] = 1,

then by Proposition 91.3, first and third lines,

[z1, z3; z2, z4] = 1− 1 = 0,

which is impossible by Step 1. So [z1, z2; z3, z4] = 1 is impossible.

2

We shall see in Lemma 94.2 that these are the only forbidden values.

Note that the set {0, 1,∞} is invariant under the six operations

λ, 1/λ, 1− λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1).

This is to be expected, because the symmetries of Proposition 91.3 cannot con-
nect attainable values to forbidden values.

§92 The cross-ratio is preserved under Möb+

Theorem 92.1 Let
f(z) =

az + b

cz + d

be an element of Möb+. Let z1, z2, z3, z4 be distinct points of Ĉ. Then

[f(z1), f(z2), f(z3), f(z4)] = [z1, z2, z3, z4].

Proof x

1. If we insert f directly into the formula for the cross-ratio, we have to do a
long calculation. So let’s find another way.

Recall that
Ta,Mb, N, a, b ∈ C, b 6= 0,

generate Möb+. So it suffices to check that each of these conserve the cross-ratio.

2. Let f = Ta, a ∈ C. Then

[f(z1), f(z2), f(z3), f(z4)] =
((z1 + a)− (z3 + a))((z2 + a)− (z4 + a))

((z2 + a)− (z3 + a))((z1 + a)− (z4 + a))

=
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)

= [z1, z2, z3, z4].
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The case where one of the zi is ∞ is included above by striking the affected
factors on top and bottom.

3. Let f = Rb, b 6= 0. Then

[f(z1), f(z2), f(z3), f(z4)] =
(bz1 − bz3)(bz2 − bz4)

(bz2 − bz3)(bz1 − bz4)

=
(z1 − z4)(z2 − z4)

(z2 − z3)(z1 − z4)

= [z1, z2, z3, z4].

The case where one of the zi is ∞ is included above by striking the affected
factors on top and bottom.

4. Let f = N . Recall N(z) = 1/z when z 6= 0,∞, and N exchanged 0 and ∞.
We have to do several cases.

Assume first that none of the zi are 0 or ∞. Then

[N(z1), N(z2), N(z3), N(z4)] =
(1/z1 − 1/z3)(1/z2 − 1/z4)

(1/z2 − 1/z3)(1/z1 − 1/z4)

=
(z3 − z1)(z4 − z2)/(z1z2z3z4)

(z3 − z2)(z4 − z1)/(z1z2z3z4)

=
(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)

= [z1, z2, z3, z4].

To handle the cases of 0 and/or∞, it suffices to check the following four identi-
ties by hand. The remaining cases can be reduced to one of these via Proposition
91.2. The variables z2, z3, z4 are assumed to be distinct and not equal to 0 or
infty. Prove:

[N(0), N(z2), N(z3), N(z4)] = [0, z2, z3, z4],

[N(∞), N(z2), N(z3), N(z4)] = [∞, z2, z3, z4],

[N(0), N(∞), N(z3), N(z4)] = [0,∞, z3, z4],

[N(0), N(z2), N(∞), N(z4)] = [0, z2,∞, z4].

Each is trivial. We leave them to the reader.

2

Exercise 92.1 Let C be complex conjugation. Show that [C(z1), C(z2), C(z3), C(z4)]
is the conjugate of [z1, z2, z3, z4].
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§93 Let’s extend the cross ratio

Previously we said that all four points should be distinct for the cross-ratio to
be defined, but actually, we can weaken this requirement slightly.

Suppose z1, z2, z3, z4 are points in S2 such that precisely two of them coincide.
So there are three distinct points.

For technical reasons, we wish to allow this possibility.

Then the cross-ratio

[z1, z2, z3, z4] :=
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

can still be defined, and it takes one of the “forbidden” values

0, 1, or ∞.

Definition 93.1 (Extension of the cross-ratio) Let z1, z2, z3, z4 ∈ Ĉ. If
precisely two of the zi coincide, define

[z1, z2, z3, z4] =


0 if z1 = z3 or z2 = z4

1 if z1 = z2 or z3 = z4

∞ if z1 = z4 or z2 = z3.

Note that we have an ill-defined factor ∞ − ∞ in some cases, which is not
covered under our previous convention, so the above is a declaration rather
than an observation in these cases.

Proposition 93.2 The extended cross-ratio is still Möbius-invariant.

The proof is left to the reader.

Exercise 93.1 x

(a) Identify the domain U of the extended cross-ratio.

(b) Prove that U is an open set in S2 × S2 × S2 × S2.

(c) Prove that the extended cross-ratio is a continuous function

U → S2.

This justifies the choice of values at the exceptional points.

§94 When the cross-ratio is real

Recall that three distinct points determine a unique cline (Proposition 36.2). A
fourth point may or may not lie on this cline. The cross-ratio gives a criterion
for when this occurs.
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Proposition 94.1 x

Let z1, z2, z3, z4 be distinct points of Ĉ. Then

[z1, z2, z3, z4] ∈ R

if and only if
z1, z2, z3, z4 lie on a common cline.

Note that if the four points are not distinct, they automatically lie on some
cline.

z1
z2

z3

z4
●

●

●

●

Figure 94.1: Four points on a cline

Lemma 94.2 For any z 6= 0, 1,∞,

z = [z, 1; 0,∞].

Proof Compute

[z, 1; 0,∞] =
(z − 0)(1−∞)

(1− 0)(z −∞)

=
(z − 0)

(1− 0)

= z.

2

The Lemma implies, in particular, that the cross-ratio attains all values except
0, 1,∞, as previously claimed.
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Exercise 94.1 Using the extended cross-ratio, show that the Lemma is true
even for z = 0, 1, and ∞.

So the extended cross-ratio attains all values in Ĉ.

Proof of Proposition 94.1 x

Let z1, z2, z3, z4 be distinct points in Ĉ. By triple transitivity, there is a unique
f in Möb+ such that

f(z2) = 1, f(z3) = 0, f(z4) =∞.

z3

z2

z4
z1
●

●
●

●

●
●

●
●

0

∞
z

1

Figure 94.2: Taking z1, z2, z3, z4 to z, 1, 0,∞

Define
z = f(z1).

Using Lemma 94.2 and invariance of the cross-ratio, calculate

z = [z, 1; 0,∞]

= [f(z1), f(z2), f(z3), f(z4)]

= [z1, z2, z3, z4].

Now:

(=⇒) Suppose [z1, z2, z3, z4] ∈ R. Then by the above, z ∈ R. So z, 1, 0,∞ lie on
a common cline, namely the real axis. That is, f(z1), f(z2), f(z3), f(z4) lie on a
common cline. But f−1 takes clines to clines. So z1, z2, z3, z4 lie in a common
cline.
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(⇐=) Suppose z1, z2, z3, z4 lie on a common cline. Since f takes clines to clines,
f(z1), f(z2), f(z3), f(z4) lie on a common cline. That is, z, 1, 0,∞ lie on a com-
mon cline. But any cline through 1, 0,∞ must be the real axis. So z ∈ R. But
by the above, [z1, z2, z3, z4] = z. So [z1, z2, z3, z4] ∈ R.

2

Exercise 94.2 Suppose that A, B, C, D are four distinct points on a cline.
Then [A,B;C,D] is real, and lies in one of the three intervals

(−∞, 0), (0, 1), (1,∞).

Call this interval Φ(A,B,C,D).

a) Prove that Φ(A,B,C,D) does not change if the order of the inputs is reversed.

b) Prove that Φ(A,B,C,D) depends only on the order that A, B, C, D are in
as you go around around the cline.

c) Give a recipe to determine Φ(A,B,C,D) from the order of A, B, C, D
around the cline.

d) There exists a surjective homomorphism S4 → S3 of symmetric groups. Its
kernel is a normal subgroup of S4 that is not the alternating group. How rare
is this phenomenon among symmetric groups, and what does it have to do with
a)-c)?

Interpretation of the cross ratio

Inspired by the above theorem, let us interpret the cross ratio

z = [z1, z2; z3, z4]

We view z2, z3, z4 as markers, or guideposts on the celestial sphere S2 = Ĉ,
against which z1 is measured. Then in some mysterious, complex analytic sense,
we have:

The relationship of z1 to z2, z3, z4 is the
same as the relationship of z to 1, 0,∞.

§95 Designing a Möbius transformation

The construction in the previous section leads naturally to the following ques-
tion. Suppose you have three distinct points

a, b, c
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that determine a cline C. How can you write down a Möbius transformation f
that takes C to the real line?

More precisely, how can we write down a Möbius transformation f that takes

a→ 1, b→ 0, c→∞?

Proposition 95.1 Let a, b, c ∈ Ĉ be distinct.

a) The expression

f(z) := [z, a; b, c]

=
(z − b)(a− c)
(z − c)(a− b)

defines a Möbius transformation.

b) It satisfies
f(a) = 1, f(b) = 0, f(c) =∞.

c) If C is the cline determined by a, b, c, then

f(C) = R̂.

Proof x

1. Note that z is allowed to equal a, b, or c. So we’re using the extended
cross-ratio, and it is well-defined.

If none of a, b or c is ∞, this is a Möbius transformation as written.

If one of a, b or c is ∞, then we cross out the term upstairs and the term
downstairs that contain ∞. What is left is the expression for a Möbius trans-
formation. So a) is true.

2. If none of a, b, c equal ∞, then assertion b) can be verified by substituting a,
b or c for z.

If one of a, b, c equals∞, then after cancelling the terms containing∞, assertion
b) can be verified by substituting a, b or c for z.

Assertion c) follows from b).

2

Exercise 95.1 Suppose the triples a, b, c and a′, b′, c′ each consist of distinct
points in C. Use Theorem 95.1 to find a formula for an orientation-preserving
Möbius transformation f with

f(a) = a′, f(b) = b′, f(c) = c′.
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a) Suppose a Möbius transformation takes 2, 4, 8 to 0, 1,∞. Where does it take
i?

b) Suppose a Möbius transformation takes 0, 1,∞ to 2, 4, 8. Where does it take
i?
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Chapter 32

Introduction

§96 Hyperbolic geometry

We’ve finally arrived at hyperbolic geometry. Here is a quote from F. Bolyai:

You must not attempt this approach to parallels. I know this way
to its very end. I have traversed this bottomless night, which extin-
guished all light and joy of my life. I entreat you, leave the science of
the parallels alone... I thought I would sacrifice myself for the sake
of truth. I was ready to become a martyr who would remove the flaw
from geometry and return it purified to mankind. I accomplished
monstrous, enormous labors [...] I have traveled past all reefs of this
infernal Dead Sea and have always come back with broken mast and
torn sail. The ruin of my disposition and my fall date back to this
time.
–Farkas Bolyai to his son János in 1820, on Euclid’s parallel postulate
(quoted in B. Loustau, Hyperbolic geometry)

B. Loustau says this:

While the revolutionary discovery of hyperbolic geometry essentially
took place in the 19th century, it continued to play a leading role
in the mathematics of the 20th, culminating with Thurston’s ge-
ometrization program and its completion in the early 21st century
by [Hamilton and] Perelman, which solved the famous Poincaré con-
jecture.
-B. Lostau, Hyperbolic geometry:

Then there’s this tantalizing poster from S. J. Trettel:
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1000 Ways to Die in
Hyperbolic Space
U n d e r g r a d u a t e M a t h C l u b

C O R N E L L U N I V E R S I T Y

SPEAKER

Steve Trettel

ABSTRACT

This talk will introduce hyperbolic 3-space, a negatively curved geometry

where straight lines diverge from one another exponentially fast.

We focus on the intrinsic geometry of hyperbolic space through trying

to reimagine some aspects of daily life when geometry acts in this new

and surprising way. In particular, we will focus on some of the perils of

visiting such a world for beings like us accustomed to flat space (spoilers:

lots of seemingly innocuous activities such as riding on a train or trying

the ferris wheel at a carnival prove to be fatal!)

Please note the unusual day and time.

APR 17 at 4:30pm
Malott 532 ? Refreshments

Figure 96.1: Dangers of hyperbolic space

§97 Groups and geometry

Why did we spend so much time on Möbius transformations, before getting to
actual hyperbolic geometry?

We can afford to do this because

The information about the geometry is already stored in the group

The group generates the geometry. So the more we study the group, the more
we study the geometry. That is the Klein program.

Here is an abstract overview of how this works, which can only be fully under-
stood after you study Lie groups. (Lie groups are groups that are also manifolds.
This includes all classic matrix groups such as GLn(R), SLn(C), SO(n), etc.)

The idea of Klein’s program (in modern form) is, first you declare the group. It
already has a lot of structure. Then you construct a geometry out of the group.

The geometry is a space that the group acts on, together with any quantities
or structures you can define on the space that are invariant under the action of
the group. Such as points, lines, distance, angles, or additional subtle ones, like
preferred multi-point functions or tensor fields.

In Lie group theory, there is an automated way to construct the geometry. In
this course, we construct the geometry by hand.
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In Part I, the group is Möb, and the space it acts on is S2. We get Möbius
geometry, with points, lines, and angles. We don’t get distance, but we get the
cross-ratio.

In Part II, the group is Möb(B1) (or equivalently, Möb(H+)), and the set is
acts on, B1 or H, is the hyperbolic plane. We get hyperbolic geometry. It has
points, lines and angles inherited from Möbius geometry. In addition, we will
introduce a notion of hyperbolic distance, so it becomes a metric space, as well
as area.

§98 The objects of geometry

Classical geometry studies

points, lines, angles, distances, and lengths.

Klein added
a group.

The group preserves angles, distances, and lengths. It takes points to points
and lines to lines.

The group should acts at least transitively on points, so that the geometry looks
the same at every point (homogeneous) . In the “best” geometries – the most
symmetrical ones, namely

hyperbolic, Euclidean, spherical

the group also acts transitively on directions, so the geometry looks the same
in every direction as well (isotropic).

Mobius geometry has
points, clines, angles.

The group preserves angles. It takes points to points and clines to clines. Clines
are more flexible than the lines of classical geometry.

Indeed, geometry is the study of anything that is preserved by the group. Möbius
geometry does not have a distance, a function of two points

z1, z2

but it has the cross ratio – an invariant of four points

z1, z2, z3, z4.
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Chapter 33

Hyperbolic lines

§99 Hyperbolic lines

To get hyperbolic geometry, we will define

points, lines, angles, distances, lengths, areas, and a group.

Right away we declare:

• The points are the points of B1. This is called the Poincaré model of the
hyperbolic plane. They are permuted by the group.

• The angles are the same as Euclidean angles. They are preserved by the
group.

• The group is Möb(B1) acting on B1.

When B1 is equipped with these structures, as well as lines, distances, lengths,
and areas, we call it the hyperbolic plane, written H2.

The circle S1 (which is not part of the hyperbolic plane) is called the circle at
infinity. This terminology will be justified later. The points on the circle at
infinity are called ideal points.

We call Möb(B1) the (two-dimensional) hyperbolic group.

Our main task in this section is to define the hyperbolic lines. We will define
distance, length, and area in succeeding chapters.

Definition 99.1 A hyperbolic line is any arc of the form

L = C ∩B1

where C is a cline that meets S1 orthogonally.
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Figure 99.1: Hyperbolic lines (via A. Zampa’s Geogebra applet)

Our first fact is that Möb(B1) acts on hyperbolic lines.

Proposition 99.2 Möb(B1) takes hyperbolic lines to hyperbolic lines.

Proof x

Let f ∈ Möb(B1). Let L be a hyperbolic line. Then

L = C ∩B1

where C is a cline orthogonal to S1. Then

f(L) = f(C) ∩ f(B1)

= f(C) ∩B1.

By conformality of f , f(C) is a cline orthogonal to S1. So f(L) is a hyperbolic
line.

2

Later we will show that the group acts transitively on hyperbolic lines. So the
hyperbolic lines are all the same.

§100 Parallel lines and the parallel postulate

We define parallel lines, then discuss how they work in hyperbolic space.

Proposition 100.1 Two distinct hyperbolic lines meet in at most one point.
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Proof x

1. Let
L = C ∩B1, L′ = C ′ ∩B1

be hyperbolic lines, where C,C ′ are clines orthogonal to S1. Assume L 6= L′.
Then C 6= C ′. So

C ∩ C ′

consists of 0, 1, or 2 points.

2. Suppose C ∩ C ′ consists of two points

P 6= Q.

By Proposition 67.2,
S(C) = C, S(C ′) = C ′,

where S is inversion in S1. So

{P,Q} = C ∩ C ′ = S(C) ∩ S(C ′) = {S(P ), S(Q)}.

Since the fixed-point set of S is S1, it follows that either

P,Q ∈ S1

or
S(P ) = Q.

IMAGE: Case of two points

In either case, at most one of P , Q lies in B1. So L∩L′ consists of at most one
point.

2

Exercise 100.1 In the above proof, prove that C ∩C ′ consists of a single point
if and only if the point lies on S1.

Definition 100.2 Hyperbolic lines are called parallel if they don’t meet.

The Euclidean parallel axiom

Euclid’s geometry has five axioms, but he used a number of “common sense
notions” that he treated informally or did not mention at all. In the late 1800s,
Hilbert made all the assumptions explicit, adding a number of new axioms.
See Loustau, pp. 12-16 for information, or for a more extensive treatment W.
Aitken, Math 410: Modern Geometry, https://public.csusm.edu/aitken_
html/m410.
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The fifth axiom (the famous Parallel Postulate) is equivalent1 to the following
statement:

Through each point not on a line there is exactly one parallel line

This is true in R2 but false in S2 and H2.

In S2, there are no parallel lines. (By definition, a spherical line is any great
circle.)

Figure 100.1: No parallel lines in S2

In H2, there are infinitely many lines parallel to a given line through a given
point P .

Figure 100.2: Many parallels through a given point (via A. Zampa’s Geogebra applet)

The other axioms (with some necessary modifications in the spherical case) are
true in all three spaces.

1Modulo the other axioms.
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In the early 1800s people tried to prove the parallel axiom from the other axioms.
(See the Farkas Bolyai quote.) Because of the existence of models of hyperbolic
geometry, this program is impossible.

The three who discovered hyperbolic geometry were

Gauss, Bolyai, and Lobachevsky.

Two kinds of parallel line

Let β, γ be parallel lines in H2. They can be parallel in two ways.

If β and γ have a common endpoint on B1, we say that β and γ are limiting-
parallel.

Figure 100.3: Limiting parallel (via A. Zampa’s Geogebra applet)

Otherwise, we say that β and γ are ultraparallel.

Figure 100.4: Ultraparallel (via A. Zampa’s Geogebra applet)
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Since the intersection point at infinity does not lie in H2, it is not immediately
clear how to characterize limiting-parallel hyperbolic lines using measurements
within H2.

But later we will see that the hyperbolic distance between limiting-parallel hy-
perbolic lines goes exponentially to zero as we go to infinity, whereas the hy-
perbolic distance between ultraparallel hyperbolic lines goes to infinity. See
§137.

§101 Geogebra

How did I make the pictures?

The Geogebra applet for hyperbolic geometry can be found on the Geogebra
website. You can use it to do ruler-and-compass constructions in hyperbolic
geometry.

• Hyperbolic geometry on Geogebra:

https:www.geogebra.org/classic/tHvDKWdC

Here is a screenshot.

Figure 101.1: Geogebra (screenshot)

The general Geogebra website is:

• Geogebra: https:www.geogebra.org

It has applets for all different topics, including several for hyperbolic geometry.
The one we’ve selected may be the best. There is also a “general” app where
you can write your own applets.
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Chapter 34

Specifying hyperbolic lines

§102 Specifying hyperbolic lines

Let us give three ways to specify a hyperbolic line.

Proposition 102.1 There is a unique hyperbolic line connecting any two dis-
tinct points at infinity.

IMAGE: A hyperbolic line connecting two points at infinity

Proposition 102.2 There is a unique hyperbolic line through any two distinct
points in H2.

(This is one of the four classical axioms in common between Euclidean and
hyperbolic geometry.)

IMAGE: A hyperbolic line through two distinct points in B1

Proposition 102.3 There is a unique hyperbolic line through any point in any
direction.

IMAGE: A hyperbolic line through a point in a given direction

You can view Propositions 102.1 and 102.3 as limiting cases of Proposition 102.2.

Proofs

Proof of Proposition 102.1 x

Let P , Q be points in S1. By Proposition 67.1, there exists a unique cline C
through P and Q that is orthogonal to S1 at P and Q. Set

L := C ∩B1.
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Then L is the unique hyperbolic line with endpoints P and Q.

2

The proofs of the remaining two propositions use the group to reduce the ques-
tion to a simpler situation. It would be nice to have a direct geometric con-
struction.

Proof of Proposition 102.2 x

1) Existence.

Let P 6= Q be points in B1. Select f so that

f(P ) = 0.

Let W be the line through f(P ) and f(Q). It is orthogonal to S1. So

W ∩B1

is a hyperbolic line through f(P ), f(Q). So

L := f−1(W ) ∩B1

is a hyperbolic line through P , Q.

2) Uniqueness.

This follows from Proposition 100.1, which says that two distinct hyperbolic
lines meet in at most one point.

2

We need the following Lemma to prove Proposition 102.3.

Lemma 102.4 A hyperbolic line through zero must be a diameter.

Proof x

Suppose L is a hyperbolic line through 0. Then

L = C ∩B1

where C is a cline orthogonal to S1, with

0 ∈ C.

Then
∞ ∈ S(C),
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where S is inversion in the unit circle. But by Proposition 67.2,

C = S(C).

So
∞ ∈ C.

So C is an extended line. So L is a diameter.

Figure 102.1: Two hyperbolic lines tangent at 0 (impossible)

2

Proof of Proposition 102.3 x

1. First assume z = 0. Clearly every diameter

L = C ∩B1

where C is a line through 0, is a hyperbolic line through zero. This gives at
least one hyperbolic line through 0 in every direction. By Lemma 102.4, there
is exactly one in every direction. This proves the Proposition at z = 0.

2. Next let z in B1 be arbitrary. Select f in Möb(B1) that takes 0 to z.

Then f takes the hyperbolic lines through zero to hyperbolic lines through z.
This yields a unique hyperbolic line through z in every direction.

(We have implicitly used the conformality of f to know that f sets up a bijection
between the directions at 0 and the directions at z.)

2

Exercise 102.1 The space of hyperbolic lines in the hyperbolic plane is home-
omorphic to an open Möbius strip.
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§103 Action of the Möbius group on hyperbolic
lines

As we observed in Proposition 99.2, the Möbius group acts on hyperbolic lines.

We can study the transitivity of this action three ways, corresponding to the
three ways of specifying hyperbolic lines, namely

Proposition 102.1 : 2 points at infinity

Proposition 102.2 : 2 points on a line

Proposition 102.3 : a point and a direction.

We do the first and third of these in this section, and the second in §108.

Our first result uses Proposition 102.1.

Proposition 103.1 The group Möb+(B1) acts transitively on hyperbolic lines.

Proof x

Let L, L′ be hyperbolic lines. Say L has endpoints P , Q on S1. Say L′ has
endpoints P ′, Q′ on S1.

By double transitivity, Corollary 89.2, there exists f in Möb+(B1) that takes

P 7→ P ′, Q 7→ Q′.

Then by uniqueness of the line connecting two points at infinity, (Proposition
102.1), f takes L to L′.

2

Our next result is more precise. It uses Proposition 102.3.

A directed line is a pair
(L,D)

where L is a hyperbolic line and D is a a direction along L. We indicate the
direction D by little arrows along L.

IMAGE: A directed line

A pointed directed line is a triple

(L,D, P )

where (L,D) is a directed line and P is a point on L.

IMAGE: A pointed directed line
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Proposition 103.2 The group Möb+(B1) acts transitively on pointed directed
lines (L,D, P ).

IMAGE: (L,D, P ) goes to (L′, D′, P ′)

Proof x

1. Let

L0 = x-axis ∩B1, D0 = positive x-direction , P0 = 0.

Then (L0, D0P0) is a pointed directed line.

It suffices to show that for any pointed directed line (L,D, P ), there exists f in
Möb+(B1) such that

f : (L,D, P ) 7→ (L0, D0, P0).

For then if (L,D, P ) and (L′, D′, P ′) are any two pointed directed lines, we can
take (L,D, P ) to (L0, D, P0) by some f , and (L′, D′, P ′) to (L0, D0, P0) by some
f ′. Then

(f ′)−1 ◦ f

takes (L,D, P ) to (L′, D′, P ′).

2. So select a map g in Möb+(B1) that takes P to 0. Then g takes (L,D)
to some directed hyperbolic line (f(L), f(D)) through 0. It is a diameter by
Lemma 102.4. Select a rotation h in Möb+(B1) that takes the directed line
(f(L), f(D)) to the directed line (L0, D).

Then
k = h ◦ g

takes
(L,D, P ) 7→ (L0, D0, P0),

as required.

2

Exercise 103.1 Let (L,D, P ), (L′, D′, P ′) be pointed directed lines. How many
elements of Möb(B1) take (L,D, P ) to (L′, D′, P ′)?

Let us turn our attention to Proposition 102.2, which involves two distinct points
in H2. How can we turn it into a transitivity statement on hyperbolic lines?

Exercise 103.2 Prove or disprove: Möb+(B1) is transitive on pairs of distinct
points in B1 (i.e. doubly transitive on B1).

This is resolved in Theorem 108.1.
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Chapter 35

The hyperbolic metric

§104 Distance in the hyperbolic plane

We define hyperbolic distance in B1 in terms of the cross-ratio.

Let z, w be points in B1. Let L be a hyperbolic line through z, w. (L is unique
if z 6= w.) Let z∞, w∞ be the endpoints of L on S1 in such a way that

z∞, z, w,w∞

are in order along α.

z z
w

w

●

●

●

●
∞

∞

Figure 104.1: Ordering of the points
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Definition 104.1 The hyperbolic distance between z and w is defined by

dH(z, w) := log |[z, w;w∞, z∞]|

= log
|w∞ − z| |z∞ − w|
|w∞ − w| |z∞ − z|

Proposition 104.2 x

a) dH(z, w) ≥ 0, with equality iff z = w.

b) dH(z, w) = dH(w, z).

In §110, we will see that dH satisfies the triangle inequality, so(B1, dH) is a
metric space.

This metric space, equipped with the lines, angles, etc. that we have already
defined, is called the Poincaré disk model of the hyperbolic plane. We write

H2

for the hyperbolic plane in the abstract, meaning any metric space isometric to
(B1, dH) and equipped with equivalent lines, angles, etc.

Proof x

a) When z = w, we get

[z, w;w0, z0] = 1, dH(z, w) = 0.

Note that we are using the extended cross-ratio here. See §93.

When z 6= w, observe that the hyperbolic line L is less than a Euclidean semi-
circle, and deduce

|w∞ − z| > |w∞ − w|, |z∞ − w| > |z∞ − z|

so
|[z, w;w∞, z∞]| > 1, dH(z, w) > 0.

b) Clear from the formula.

2

Note that since the four points are on a cline, the cross-ratio is real. Is it
positive?

Proposition 104.3 If z, w, z∞, w∞ are chosen as above, then [z, w;w∞, z∞]
is automatically positive.
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So we don’t actually need the absolute value sign on |[z, w;w∞, z∞]| in the first
line of the definition.

Exercise 104.1 x

a) Prove this.

b) Suppose we accidentally switched the order of z and w along L without chang-
ing z∞ and w∞. What is the effect of this?

§105 Invariance of hyperbolic distance

The Möbius transformations are isometries for the distance function defined
above.1

Theorem 105.1 Hyperbolic distance dH is invariant under the action of Möb(B1)
on B1.

This means: if f ∈ Möb(B1), then

dH(f(z), f(w)) = dH(z, w) for all z, w ∈ B1.

Proof x

This is obvious. For the points z∞, z, w, w∞ in order along a hyperbolic line
L map to points f(z∞), f(z), f(w), f(w∞) in order along the hyperbolic line
f(L).

And the cross product is preserved. So

dH(f(z), f(w)) = dH(z, w).

2

Let Isom(B1) be the group of isometries of B1. Then the Proposition says

Möb(B1) ⊆ Isom(B1).

We will prove in §?? that these are equal.

§106 Some concrete distances

Distance along a ray

Proposition 106.1 Let s < t be points along the hyperbolic line

L0 = R ∩B1.

1We will call them isometries even though we have not finished proving that (B1, dH) is
a metric space.
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Then
dH(s, t) = log

(1− s)(1 + t)

(1 + s)(1− t)
.

This follows directly from the definition. In particular, for 0 < t < 1,

dH(0, t) = log
1 + t

1− t
.

More general, by rotational symmetry we obtain:

Proposition 106.2 For any z ∈ B1,

dH(0, z) = log
1 + |z|
1− |z|

.

So as z approaches the edge of B1, the hyperbolic distance to 0 goes to infinity.

Figure 106.1: Hyperbolic distance as a function of t (via https:www.desmos.com)

This shows

The hyperbolic plane is infinite in extent.

Exercise 106.1 x

a) Prove the Proposition.

b) If d = dH(0, z), prove
|z| = tanh(d/2).
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Infinitude and Kt

We can visualize the infiniteness of the hyperbolic plane in another way. Let
t > 0. Consider the point sequence

0, t = Kt(0), Kt(Kt(0)), Kt(Kt(Kt(0))), . . .

depicted in the figure.

● ● ● ●●

0 t
2t

t  +12

Figure 106.2: Iterated points

Defining
pi := Ki

t(0), i ≥ 0,

since Kt is an isometry we find by induction that

dH(pi, pi+1) = dH(0, t)

for all i ≥ 0. So the depicted points are equally spaced in the hyperbolic metric.
This gives us a vivid view of how hyperbolic distances are much larger than
Euclidean distances as we approach the boundary of B1.

Additivity along a line

Another useful observation is the following.

Proposition 106.3 Let −1 < r < s < t < 1 be points along L0. Then

dH(r, t) = dH(r, s) + dH(s, t).

That is, hyperbolic lines act like Euclidean lines in the sense that distance
is exactly additive along a hyperbolic line. Later we will prove the triangle
inequality.
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Proof The proof is trivial from Proposition 106.1. It is just additivity of the
logarithm. Namely,

dH(r, s) + dH(s, t) = log
(1− r)(1 + s)

(1 + r)(1− s)
+ log

(1− s)(1 + t)

(1 + s)(1− t)

= log
(1− r)(1 + t)

(1 + r)(1− t)
= dH(r, s) + dH(s, t).

2
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Chapter 36

The arccosh formula for
distance

§107 The arccosh formula for distance

A disadvantage of the cross-ratio formula is that it is awkward to find the
endpoints z∞, w∞. Here is a formula for hyperbolic distance that depends only
on

|z|, |w|, |z − w|.

Theorem 107.1 Let z, w ∈ B1. Then

dH(z, w) = arccosh

(
1 +

2|z − w|2

(1− |z|2)(1− |w|2)

)
, z, w ∈ B1.

Note that

dH(0, z) = arccosh

(
1 +

2|z|2

1− |z|2

)
, z ∈ B1

which goes to infinity as z converges to S1, as before.

Also, now we’re in position to see that if z, w converge to distinct points on S1,
then clearly

dH(z, w)→∞.

So distances get very large as points go to the “circle at infinity”. This justifies
its name.

The proof is a remarkably long, but routine calculation.
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Proof x

Let z, w ∈ B1.

We will move z to 0 and use the formula for dH(0, w) given by Proposition 106.2.
It is convenient to use the Apollonian slide

f = K−z

to do this. Then f(z) = 0 and

f(w) =
w − z
−z̄w + 1

.

Set d = dH(z, w). Then since f is an isometry,

d = dH(z, w)

= dH(f(z), f(w))

= dH(0, f(w))

= log
1 + |f(w)|
1− |f(w)|

= log
1 + |(w − z)/(1− z̄w)|
1− |(w − z)/(1− z̄w)|

= log
|1− z̄w|+ |w − z|
|1− z̄w| − |w − z|

.

where the fourth line is due to Proposition 106.2. So

|1− z̄w|+ |w − z|
|1− z̄w| − |w − z|

= ed

|1− z̄w|+ |w − z| = ed(|1− z̄w| − |w − z|)
(ed + 1)|w − z| = (ed − 1)|1− z̄w|

|w − z|
|1− z̄w|

=
ed − 1

ed + 1

= tanh(d/2).

So

sech2(d/2) = 1− tanh2(d/2)

= 1− |w − z|
2

|1− z̄w|2
.

So

cosh2(d/2) =

(
1− |w − z|

2

|1− z̄w|2

)−1
=

|1− z̄w|2

|1− z̄w|2 − |w − z|2
.
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But

cosh2(d/2) =
1

4
(ed/2 + e−d/2)2

=
1

2
(cosh(d) + 1).

So

cosh(d) + 1 = 2 cosh2(d/2)

= 2
|1− z̄w|2

|1− z̄w|2 − |w − z|2

= 2 +
2|w − z|2

|1− z̄w|2 − |w − z|2
.

So

cosh(d) = 1 +
2|w − z|2

|1− z̄w|2 − |w − z|2

= 1 +
2|w − z|2

(1− z̄w − zw̄ + |z|2|w|2)− (|w|2 − wz̄ − w̄z + |z|2)

= 1 +
2|w − z|2

(1 + |z|2|w|2)− (|w|2 + |z|2)

= 1 +
2|w − z|2

(1− |z|2)(1− |w|2)
.

as desired.

2

Exercise 107.1 Let −1 < s < t < 1 be points on the real axis. We have

dH(s, t) = log
(1− s)(1 + t)

(1 + s)(1− t)

= arccosh

(
1 +

2(s− t)2

(1− s2)(1− t2)

)
.

= 2 arctanh(t)− 2 arctanh(s).

The last formula is new. Each is useful in its own way.

§108 Transitivity on point pairs

We now investigate transitivity on point pairs in hyperbolic space.
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Question: The group Möb(B1) is transitive on B1. Is it transitive on pairs of
points in B1?

Of course not. If dH(P,Q) is not equal to dH(P ′, Q′), there is no way to send

P 7→ P, Q 7→ Q′

by a hyperbolic isometry. A necessary condition for this to be possible is

dH(P,Q) = d(P ′, Q′).

The following theorem says that this condition is also sufficient.

Theorem 108.1 Möb+(B1) is transitive on point pairs that have the same hy-
perbolic distance.

The analogous theorem is certainly true in Euclidean geometry.

Proof x

1. Let P , Q be points in B1. Set d = dH(P,Q).

By the transitivity of Möb+(B1) on B1 (see Theorem 47.1), we can find f in
Möb+(B1) with

f(P ) = 0.

By composing f with an additional rotation, we can arrange

f(Q) = t where t > 0.

d

d
f(Q)

P

Q

f(P) ●

●

●

●

Figure 108.1: Moving P , Q to a standard position
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Then
dH(0, t) = dH(f(P ), f(Q)) = dH(P,Q) = d.

Recall the formula
dH(0, t) = log

1 + t

1− t
.

So
d = log

1 + t

1− t
.

From this we deduce
f(Q) = t = tanh(d/2).

2. Now let P,Q, P ′, Q′ be points in B1 with

dH(P,Q) = dH(P ′, Q′).

Let
d := dH(P,Q) = dH(P ′, Q′).

By Step 1, there is f in Möb+(B1) such that

f(P ) = 0, f(Q) = tanh(d/2).

Similarly, there is f ′ in Möb+(B1) such that

f(P ′) = 0, f(Q′) = tanh(d/2).

Then h := (f ′)−1 ◦ f takes

f(P ) = P ′, f(Q) = Q′.

as required.

2
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Chapter 37

The triangle inequality

§109 Dropping a perpendicular

We establish the existence of perpendiculars. This will be useful in proving the
triangle inequality.

Proposition 109.1 Let L be a hyperbolic line, and P a point. Then there is a
unique hyperbolic line through P and perpendicular to L.

IMAGE: Dropping a perpendicular

Note that the theorem is trivial when P lies on L. So we usually imagine that
P does not lie on L.

The analogous statement in Euclidean geometry is a classic theorem sometimes
proven in high school.

Proof x

1. Let L be a hyperbolic line, and P a point.

Claim: There exists a hyperbolic isometry h such that

h(L) = L0, h(P ) ∈ L1,

where L0 = R ∩B1, L1 = iR ∩B1.

Let us prove the Claim. By the transitivity of Möb+(B1) on hyperbolic lines,
there exists f in Möb+(B1) such that

f(L) = L0.

Now the Apollonian slides Kt, −1 < t < 1, have

Kt(L0) = L0
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and the family of points

Kt(f(P )), −1 < t < 1,

forms a circular arc extending from −1 to 1.

IMAGE: Trajectory of f(P )

By the Intermediate Value theorem, this arc intersects the imaginary axis at
some point. So there exists t ∈ (−1, 1) such that

Kt(f(P )) ∈ L1.

Set
h := Kt ◦ f.

Then
h(L) = L0, h(P ) ∈ L1.

This prove the Claim.

2. Now L1 is a hyperbolic line through P0 that is perpendicular to L0. It is
evident that L1 is the unique such line, because all the other hyperbolic lines
perpendicular to L0 curve away from L1.

IMAGE: Possibly lines perpendicular to L0

It follows that h−1(L1) is the unique hyperbolic line through P perpendicular
to L.

2

Hyperbolic segments

Define the hyperbolic segment between P and Q as follows.

If P 6= Q, it is the set of points in the hyperbolic line through P and Q that lie
between P and Q, including P and Q.

If P = Q, it is {P}.
We use the notation

[P,Q]H

or
PQ

for the hyperbolic segment between P and Q. We must be careful with the
latter notation, becomes in some contexts PQ is used to denote a Euclidean
segment.
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Distance to a line

Define the hyperbolic distance of a point P to a set Z by

distH(P,Z) := inf
z∈Z

dH(P, z).

If Z is closed in B1, one can prove that the inf is a min:

distH(P,Z) := min
z∈Z

dH(P, z).

That is, the infimum is realized by some point z in Z.

Exercise 109.1 Prove this.

Let L be a hyperbolic line and P a point not on L. Let L′ be the line through
P perpendicular to L. Let X be the point where L′ meets L. The segment PX
is perpendicular to L at X.

We call X the base of the segment PX. (In the special case P ∈ L, we have
X = P .)

Proposition 109.2 Let L be a hyperbolic line and P a point. Then

distH(P,L) = dH(P,X).

So the distance of P to L is realized by the perpendicular segment PX.

Proof x

By the argument in the previous proof, we may assume that L = L0 and P ∈ L1.
Then L′ = L1 and X = 0. The result then follows by direct calculation.
Consider any Y on L. Then

dH(Y, P ) = arccosh

(
1 +

|Y − P |2

(1− |Y |2)(1− |P |2)

)
≥ arccosh

(
1 +

|X − P |2

(1− |X|2)(1− |P |2)

)
= dH(X,P )

with equality if and only if Y = X. This proves the Proposition.

2

§110 The triangle inequality

We now prove the triangle inequality and some consequences. The proof is
similar to the last few proofs that we have done, namely use an isometry to put
everything in a standard position, and then do an explicit calculation.

IMAGE: Triangle inequality
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Theorem 110.1 x

a) Let P , Q, R be points in the hyperbolic plane. Then

dH(P,Q) ≤ dH(P,R) + dH(R,Q).

b) Equality is attained if and only if R lies on the segment from P to Q.

Proof x

a) Let P , Q, R be points in B1.

Let L be the line through P and Q. By applying a hyperbolic isometry as in
the proof of Proposition 109.1, we may assume that

P,Q ∈ L = L0, R ∈ L1,

where L0 = R ∩B1, L1 = iR ∩B1.

We may assume wlog that P ≤ Q (as real numbers). By applying a hyperbolic
reflection across L (complex conjugation), we may assume that R has nonneg-
ative imaginary part. Typical pictures are the following:

P Q

R

P Q

R

P Q

R

Figure 110.1: Three possible positions of the triangle

In all cases,

|P −R| ≥ |P − 0|, 1− |R|2 ≤ 1− |0|2,
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so (noting that arccosh is monotone)

dH(P,R) = arccosh

(
1 +

2|P −R|2

(1− |P |2)(1− |R|2)

)
≥ arccosh

(
1 +

2|P − 0|2

(1− |P |2)(1− |0|2)

)
= dH(P, 0).

Similarly

dH(Q,R) ≥ dH(Q, 0).

In both cases, we get strict inequality if R does not lie on the x-axis (that is,
R 6= 0).

Now if 0 ∈ [P,Q], then by the additivity property of Proposition 106.3, we get

dH(P,Q) = dH(P, 0) + dH(0, Q).

If 0 6∈ [P,Q], we get

dH(P,Q) < dH(P, 0) + dH(0, Q).

In either case, we get using the previous inequalities

dH(P,Q) ≤ dH(P, 0) + dH(0, Q)

≤ dH(P,R) + dH(R,Q)

which proves the triangle inequality.

b) In the above chain of inequalities, we get strict inequality iff either

i) R does not lie on the x-axis, or

ii) R lies on the x-axis (so R = 0), but R 6∈ [P,Q].

That is, we get strict inequality unless R lies on the Euclidean segment [P,Q].

But in our setup, the Euclidean segment from P to Q is equal to the hyperbolic
segment from P to Q. So we get strict inequality unless R lies on the hyperbolic
segment from P to Q.

2

Theorem 110.2 The hyperbolic plane is a metric space.

Proof We showed positive definiteness and symmetry in Proposition 104.2.
The Triangle Inequality completes the proof.
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2

Write this metric space as
H2 = (B1, dH).

Corollary 110.3 The metric dH induces the standard topology on B1.

Proof x

It can be seen by taking a Taylor approximation of cosh in Theorem 107.1
that small hyperbolic disks about a given point are nearly the same as small
Euclidean disks. In fact, every Euclidean disk about p contains a hyperbolic disk
about P , and vice versa. So the Euclidean metric and the hyperbolic metric
generate the same topology.

2

Characterization of the hyperbolic line through P and Q

Let P,Q ∈ H2. By the triangle inequality, we can characterize the hyperbolic
segment [P,Q]H as the set of points R where the triangle inequality is exact.
That is,

Proposition 110.4

[P,Q]H = {R ∈ H2 : dH(P,Q) = dH(P,R) + dH(R,Q)}.

Now assume P , Q are distinct, and let L be the hyperbolic line through P and
Q. Then we have

R ∈ L⇐⇒ P,Q,R lie on a common hyperbolic line
⇐⇒ R ∈ [P,Q]H or P ∈ [Q,R]H or Q ∈ [P,R]H .

P

Q

R

●

●

●
P

Q

R

●

●

●
P

Q

R
●

●

●

Figure 110.2: Three possible positions of R

By the previous result about segments, this establishes the following Proposi-
tion.
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Proposition 110.5 Let P , Q be distinct points in the hyperbolic plane. Let L
be the hyperbolic line through P and Q. Then

R ∈ L

if and only if the following statement is true about R:

dH(P,Q) = dH(P,R) + dH(R,Q)

or dH(P,R) = dH(P,Q) + dH(Q,R)

or dH(R,Q) = dH(R,P ) + dH(P,Q).

Note that the three cases are not perfectly distinct (R might coincide with P
or Q).

The point of this proposition is that hyperbolic lines are determined by the
metric.
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Chapter 38

The infinitesimal metric

§111 The local distance-stretching factor

We will express hyperbolic arclength as a multiple of Euclidean arclength, and
use it to define the length of curves.

Recall the arccosh formula for distance (Theorem 107.1), which we write as

cosh(dH(z, w)) = 1 +
2|z − w|2

(1− |z|2)(1− |w|2)
, z, w ∈ B1.

Suppose that z and w are extremely close together, specifically

|z − w| � min(1− |z|, 1− |w|).

Let us get an approximate expression for dH(z, w). We have

z ≈ w, dH(z, w) ≈ 0, |w|2 ≈ |z|2,

so we may use a Taylor expansion on the left and a substitution on the right to
get

1 +
1

2
dH(z, w)2 ≈ 1 +

2|z − w|2

(1− |z|2)2

from which we get

dH(z, w) ≈ 2|z − w|
1− |z|2

.

That is, on a very small scale, hyperbolic distance differs from Euclidean dis-
tance by a multiplicative factor, the local distance-stretching factor

2

1− |z|2
, |z| < 1.
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Hyperbolic arclength. Let
ds

denote Euclidean arc-length. Motivated by the above discussion, we define
hyperbolic arc-length as a multiple of ds:

dsH :=
2

1− |z|2
ds, |z| < 1.

Conformality. Because the local stretch-factor depends only on the position of
z, and not on the direction of the tiny vector z −w, we say that the hyperbolic
arclength dsH is “conformally related” to the Euclidean arclength ds.

That is, on a very small scale, the map from Euclidean distances to hyperbolic
distances is nearly a similarity.

But a similarity is angle-preserving. So on a very small scale, hyperbolic angles
are nearly equal to Euclidean angles. Passing to limits, we see that hyperbolic
angles are exactly equal to Euclidean angles.

This explains why angles are the same in hyperbolic geometry as in Euclidean
geometry.

§112 Lengths of curves

In the Euclidean plane, we write the length element heuristically as

ds =
√
dx2 + dy2.

Let γ(t) = (x(t), y(t)), a ≤ t ≤ b be a C1 curve in R2.

We obtain the Euclidean length of γ by computing

length(γ) :=

∫
γ

ds

=

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt

=

∫ b

a

|γ′(t)| dt.

The hyperbolic length of z = γ(t) is

lengthH(γ) =

∫
γ

dsH

=

∫
γ

2

1− |z|2
ds

=

∫ b

a

2

1− |γ(t)|2
|γ′(t)| dt.

(112.1)
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Invariance under reparametrization. Just as in the Euclidean case, if we define
a new curve by

β := γ ◦ h

where h(u) is a real-valued function with h′(u) > 0, then using the chain rule
and appropriate limits of integration, the length of the curve remains the same:

lengthH(β) = lengthH(γ).

Exercise 112.1 Let γ(u) be a curve that parametrizes the segment

[s, t], −1 < s < t < 1,

lying on the x-axis. Verify by integration

lengthH(γ) = log
(1− s)(1 + t)

(1 + s)(1− t)

agreeing with dH(s, t) as given by the formula in Proposition 106.1.

Exercise 112.2 x

a) Prove that a hyperbolic segment minimizes length among all curves with the
same endpoints.

b) Use this result to give another proof of the triangle inequality.

Exercise 112.3 Prove that any path that goes to the edge of B1 has infinite
hyperbolic length.
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Chapter 39

Comparison of spherical and
hyperbolic metrics

§113 The spherical metric on R2

We will show how to transfer the spherical metric to R2 using stereographic
projection.

The key is the picture below, which we have seen before. It shows the continents
projected from S2 to the plane by stereographic projection from the south pole.

Figure 113.1: Stereographic projection (Strebe, Wikipedia)

Let us suppose that some ants live in R2, but suffer from a collective delusion
that they live on S2. They experience spherical geometry just as if they were
living on the surface of the sphere. They believe in the map above.

For example, spherical distances are much smaller than Euclidean distances as
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you go out to infinity. So the ants experience the points of Antarctica to be
close together (as they are on the sphere) instead of far apart (as they are on
the flat map).

Just one ant, a heretic, sees the reality of R2. In order to get along with the
other ants, she has to pretend to be on S2. But she can’t experience it directly.
Instead, she must calculate it mathematically.

§114 Spherical distance on R2

Let us transfer spherical distance to R2. On the Riemann sphere S2, define

distS2(P,Q)

to be the geodesic distance from P to Q. That is, it is the shortest distance
along the surface of the sphere, which occurs along a great circle. It is equal to
the central angle between the vectors representing the two points.

Let us transfer this to the complex plane via stereographic projection. Define
for two points z, w ∈ R2

dS(z, w) = distS2(τ(z), τ(w)),

where τ = σ−1 is the inverse of stereographic projection. That is, we are living
in R2, but pretending that we live in S2.

In this computation, we’re projecting from the north pole, but in Figure 113.1,
we projected from the south pole. The formula for spherical distance on R2 is
the same either way.

We obtain:

Proposition 114.1 Spherical distance is given on R2 by

dS(z, w) = arccos

(
1− 2|z − w|2

(1 + |z|2)(1 + |w|2)

)
, z, w ∈ R2.

It is a straightforward calculation to prove this result using the formulas of
Proposition 10.2 and Theorem 107.1.

Exercise 114.1 Carry this out.

Note that unlike the hyperbolic case, this is defined on the whole plane.

Also, if |z| and |w| get very large, the distance dS(z, w) gets very small, which
is just what we expect, since the points are crowding around the south pole.

Exercise 114.2 What is the limit of dS(0, w) as |w| → ∞? How does it com-
pare to what you expect on the true sphere?
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§115 Spherical arclength on R2

Next let us transfer spherical arclength from S2 to R2 via stereographic projec-
tion.

Proposition 115.1 Spherical arclength is given on R2 by

dsS :=
2

1 + |z|2
ds, z ∈ R2,

where ds =
√
dx2 + dy2 is the Euclidean length element on R2

Note that the S2-arclength is twice as large as Euclidean arclength at the origin,
but it is a tiny fraction of it as z →∞. This is what we expect.

There are to ways to prove this:

1) Infinitesimalize the formula for spherical distance, similar to the way we
infinitesimalized the formula for hyperbolic distance in §111.

2) Compute the infinitesimal distance-stretching factor of stereographic pro-
jection using the geometric construction of §61, and use it to transfer the
arclength.

Method 1) is a straighforward computation.

Exercise 115.1 Carry out method 1).

In the rest of the section, we will carry out method 2).

Conformal factor of a map

We will need the following.

If f is a conformal map, then at each point x, the derivative map Df(x) expands
or contracts the lengths of its input vectors by a uniform factor. Call this the
conformal factor of f at x, denoted Sf(x) (nonstandard notation). It is given
by

Sf(x) =
|Df(x)(v)|
|v|

for any v 6= 0.

The right-hand side is independent of v precisely because f is conformal.

Exercise 115.2 Show that the conformal factor of a holomorphic function f at
the point z is |f ′(z)|.
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Proving the Proposition

The Proposition follows from the Lemma below. Let τ = σ−1 : R2 → S2 \ {N}
be the inverse of stereographic projection.1

Lemma 115.2 The conformal factor of τ is

Sτ(z) =
2

1 + |z|2
, z ∈ C.

Proof of Lemma x

1. We will give a geometric proof based on §61.

For convenience, we will use the version of σ, call it σ1, that projects from the
north pole to the plane tangent to S2 at the south pole, as in §61. Let τ1 = σ−11 .

Let Q be a point in R2, and P = τ1(Q). This is depicted in the following
diagram.2

N

P

Q

v

w

Figure 115.1: Taking w to v

The conformal factor Sτ1(Q) is the dilation factor of τ1 acting on an infinitesimal
tangent vector w to R2 at Q.

Let τ1 carry w to a vector v tangent to S2 at P . By Proposition 61.2, w is
obtained from v by

w = (D ◦R)(v),

1Again, the formula comes out the same whether we project from the north pole or the
south pole.

2The vectors v and w are intended to represent infinitesimal tangent vectors. They are in
reality expremely short, but have been magnified them so that they can be seen.
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where R is reflection in a certain plane plane x, and D is the dilation of R3

about the point N that takes P to Q. Since R is an isometry, the dilation factor
of D ◦R equals that of D, which is

|NQ|
|NP |

.

So

|w| = |NQ|
|NP |

|v|, |v| = |NP |
|NQ|

|w|.

2. We can find this ratio using similar triangles. LetM be the midpoint between
P and N .

1

N

P

Q

O

S

M

Figure 115.2: Finding the ratio |NP |/|NQ|.

We get from the similar triangles NMO and NSQ

|NM |
|NO|

=
|NS|
|NQ|

i.e.

|NM |
1

=
2

|NQ|

i.e.

|NP |
2

=
2

|NQ|

259 Table of Contents



PART III CHAPTER 39. COMPARISON OF METRICS

so

Sτ1(Q) =
|NP |
|NQ|

=
4

|NQ|2

=
4

4 + |SQ|2
,

where we used Pythagoras’ Theorem in the last line.

3. To get Sτ(z), we have to compensate by factors of 2 because the standard
R2 is the one that meets S2 in the equator, not the one tangent at the south
pole.

Q

O z

S

Figure 115.3: Factors of 2

Substitute
Sτ(z) = 2Sτ1(Q), |SQ| = 2|z|

to get

Sτ(z) =
2

1 + |z|2
, z ∈ C.

2

Proof of Proposition 115.1 x

The conformal factor
Sτ(z) =

2

1 + |z|2
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is the infinitesimal stretching factor of

τ : (map)→ (territory),

that is, from the flat map to the round territory. It expands distances by a
factor of 2 near z = 0, but shrinks them a lot when |z| is large.
So we transfer the length element of S2 to R2 by defining the spherical length
element on R2 as follows:

dsS =
2

1 + |z|2
ds, z ∈ R2,

where ds =
√
dx2 + dy2 is the Euclidean length element of R2.

2

Spherical curve-lengths

We use dsS to compute the S2-length of curves γ in R2 as follows.

Let z = γ(t), a ≤ t ≤ b, be a curve in R2. Then the S2-length of γ is

lengthS(γ) =

∫
γ

dsS

=

∫ b

a

2

1 + |γ(t)|2
|γ′(t)| dt.

Exercise 115.3 Compute

(a) The S2-length of the circle |z| = r.
(a) The S2-radius of the circle |z| = r.
(a) The S2-length of the x-axis.

Using these results, the heretic ant can acquit herself respectably at late after-
noon social events, where these numbers often mentioned by “true believers”.

§116 Comparing the hyperbolic and spherical met-
rics

Let us compare the formulas for the hyperbolic and spherical metrics.

We know hyperbolic arclength and distance from §107 and §111. We know
spherical arclength and distance from §115 and §114.

The following tables exhibit the comparison.
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Hyperbolic arclength:

dsS :=
2

1− |z|2
ds, z ∈ B1

Spherical arclength:

dsS :=
2

1 + |z|2
ds, z ∈ R2

Hyperbolic distance:

dS(z, w) = arccosh

(
1 +

2|z − w|2

(1− |z|2)(1− |w|2)

)
, z, w ∈ B1

Spherical distance:

dS(z, w) = arccos

(
1− 2|z − w|2

(1 + |z|2)(1 + |w|2)

)
, z, w ∈ R2

The hyperbolic quantities are defined on B1, whereas the spherical quantities
are defined on R2.

They differ from each other by flipping signs and replacing cosh by cos. This
appears to be some kind of grand duality.

Exercise 116.1 Compare the Taylor expansions of cos and cosh.

Exercise 116.2 In R2, a circle is the solution of x2 + y2 = 1, whereas a hy-
perbola is the solution of x2 − y2 = 1.

If we interpret x and y as complex variables, we obtain two figures in C2. Show
that they are equivalent.
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Chapter 40

Circumference and area of a
hyperbolic disk

§117 Circumference and area of a hyperbolic disk

Let’s derive the circumference and area of a hyperbolic disk as a function of the
hyperbolic radius.

Theorem 117.1 A circle of hyperbolic radius r has hyperbolic circumference

CH(r) = 2π sinh(r),

and hyperbolic area
AH(r) = 2π(cosh(r)− 1).

Note that the area expression is positive for r > 0.

So the circumference and area grow exponentially as r → ∞, as we previously
mentioned.

Exercise 117.1 Argue that it is easy to get lost in the hyperbolic plane.

Proof of Theorem x

1. Let Kr be a circle of hyperbolic radius r. The hyperbolic group acts transi-
tively on B1, and it takes circles of hyperbolic radius r to circles of hyperbolic
radius r, so we may assume wlog that the center of Kr is 0.

2. By rotational symmetry of the hyperbolic metric about 0, a hyperbolic circle
with center 0 is also a Euclidean circle with center 0, it’s just that the hyperbolic
radius is not the same as the Euclidean radius.
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By Theorem 107.1, the two radii are related by

cosh(r) = 1 +
2t2

1− t2
=

1 + t2

1− t2

where

r = dH(0, t) = hyperbolic radius, t = Euclidean radius.

We convert this to sinh by

1 + sinh2(r) = cosh2(r)

=
1 + 2t2 + t4

1− 2t2 + t4

= 1 +
4t2

1− 2t2 + t4

to obtain
sinh(r) =

2t

1− t2
.

3. Now let us calculate the hyperbolic circumference CH(r). The circle is
parametrized by

γ(u) = teiu, 0 ≤ u ≤ 2π.

So by (112.1)

CH(r) =

∫ 2π

0

(
2

1− |γ(u)|2

)
|γ′(u)| du

=

∫ 2π

0

(
2

1− t2

)
|tieiu| du

= (2πt)

(
2

1− t2

)
.

We recognize this as the Euclidean circumference times the hyperbolic stretch
factor at Euclidean radius t. So

CH(r) =
4πt

1− t2
= 2π sinh(r)

using Step 2. This is the circumference.

4. Next we integrate in shells to get the hyperbolic area AH(r) enclosed by Kr.
Fill the region between 0 and Kr by “parallel” circles

Ks, 0 < s ≤ r.
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IMAGE: “Parallel” circles

Each pair of circles Ks, Ks′ are at constant hyperbolic distance from each other,
and the hyperbolic distance between them is |s′ − s|. So we can compute the
hyperbolic area of the enclosed disk by

AH(r) =

∫ r

0

CH(s) ds

=

∫ r

0

2π sinh(s) ds

= 2π cosh(r)− 2π cosh(0)

= 2π(cosh(r)− 1).

2

The area element

Our method of integrating by shells is intuitively appealing, but it is a bit
heuristic, plus it won’t work on a region of arbitrary shape.

What is the area element of the hyperbolic plane?

Recall that the length element in the Poincaré model is

dsH2 =
2 ds

1− |z|2

where ds is the Euclidean length element.

Informally, we get the area element by squaring the length element. So the area
element in the Poincaré model is

dAH2 =

(
2 ds

1− |z|2

)2

=
4 ds2

(1− |z|2)2

=
dx dy

(1− |z|2)2

=
dA

(1− |z|2)2

where dA = dx dy is the Euclidean area element. The ds2 notation is heuristic,
but at least dx dy makes sense and we can integrate it over any region.1

Exercise 117.2 Use this area element to calculate the hyperbolic area AH(r).

1In modern differential geometry, the notation ds2 is not used.
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§118 Comparison of spherical, flat, and hyper-
bolic disks

Let us compare the circumference and area of intrinsic disks in S2, R2, and H2.

Let P be a point in S2. The intrinsic disk of radius r about P defined by

Dr := {x ∈ S2 : dS(x, P ) < r},

where dS is the geodesic distance on S2.

  

        
rD

r

Figure 118.1: An intrinsic disk of radius r

The circumference and area of Dr can easily be computed to be

CS(r) = 2π sin r, AS(r) = 2π(1− cos r).

for 0 ≤ r ≤ π. Note that r = π is the distance from P to its antipode −P .

Exercise 118.1 Check this.

Comparing these to the hyperbolic case, we see that they differ by replacing
hyperbolic trig functions by circular trig functions, and in the second case,
switching the sign, which implies positivity.

Circumference

The formulas for circumference are

CS(r) = 2π sin(r), 0 ≤ r ≤ π (spherical)
CE(r) = 2πr, 0 ≤ r (Euclidean)
CH(r) = 2π sinh(r), 0 ≤ r (hyperbolic).
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They have Taylor expansions

CS(r) = 2π(r − r3

6
+ · · · ) (spherical)

CE(r) = 2πr (Euclidean)

CH(r) = 2π(r +
r3

6
+ · · · ) (hyperbolic).

So the three formulas are asymptotically equal to the Euclidean formula as
r → 0, but the spherical circumference is slightly smaller, and the hyperbolic
circumference is slightly larger.

When r is much greater than 0, the spherical circumference is a lot smaller, and
the hyperbolic circumference is a lot bigger.

0 1 2 3 4
0

5

10

15

20

Circumference

2

2
2H
R

S

Figure 118.2: Circumference of a circle in H2, R2 and S2 (Mathematica)

Area

The formulas for area are

AS(r) = 2π(1− cos(r)), 0 ≤ r ≤ π (spherical)

AE(r) = πr2, 0 ≤ r (Euclidean)
AH(r) = 2π(cosh(r)− 1), 0 ≤ r (hyperbolic).

They have Taylor expansions

AS(r) = π(r2 − r4

12
+ · · · ) (spherical)

AE(r) = πr2 (Euclidean)

AH(r) = π(r2 +
r4

12
+ · · · ) (hyperbolic).
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So the three formulas are asymptotically equal to the Euclidean formula as
r → 0, but again the spherical value is slightly smaller, and the hyperbolic
value is slightly bigger.

As before, when r is much greater than 0, the spherical area is a lot smaller,
and the hyperbolic area is a lot bigger.

A visual proof that the area is smaller for the sphere is given by this picture,
from J. Weeks, p. 133.

Figure 118.3: Missing area in spherical disk (Weeks

We slice up a spherical disk into angular sectors in order to be able to press it
flat onto the plane. Space opens up between the sectors. This shows that the
area of a spherical disk is less than the area of the Euclidean disk of the same
radius.

A picture of how the area is larger for the hyperbolic plane is given by this xkcd
panel.1

Figure 118.4: Extra area in hyperbolic disk (R. Munroe, xkcd, pie_charts)

If time would only expand in the same way, we’d get more done.

1The singularity at the origin is not really accurate. A more realistic representation is the
hyperbolic quilt commissioned by J. Weeks. Google “hyperbolic quilt jeff weeks”.
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Here is a comparison of all three. The spherical area is constant for r ≥ π.

0 1 2 3 4
0

5

10

15

20

Circumference

S

R
H2

2

2

Figure 118.5: Area of a circle in H2, R2 and S2 (Mathematica)

Exercise 118.2 (Dido’s problem) Suppose you are given a rope of length L.
You can claim as much land as you can enclose with the rope.

a) Assuming that you want as much land as possible, are you better off in
S2, R2, or H2?

b) How does it depend on the length of the rope?
c) What does it mean to enclose?
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Chapter 41

Some tilings

§119 A pentagonal tiling

Recall the “Zürich” tiling1 from §4.

Figure 119.1: Order-4 bisected pentagonal tiling of the hyperbolic plane (Rocchini,
Wikipedia)

By the way – notice the pentagons.

1Tesselation, Parkettierung.
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Figure 119.2: See the pentagons? (Rocchini, Wikipedia, modified)

Here is a cleaner picture.

Figure 119.3: Hyperbolic (5, 4) tiling (via Kaleidotile)

The pentagons are bounded by hyperbolic lines in red. The lines meet at right
angles. So the pentagons have angles 90-90-90-90-90.

The Euclidean plane has no such pentagon, and no tiling by regular pentagons.

Here is a view of the same tiling, moved by an isometry so there is a vertex at
0.
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Figure 119.4: Another view (N. Breuckmann and B. Terhal)

Since the tiling has 5-sided regular figures1 that meet 4 to a corner, we call it a
(5, 4) tiling. This is called a Schläfli symbol.

Question Can you find tilings with Schläfli symbol (4, 4) and (3, 4)? Hint:
They don’t lie in the hyperbolic plane.

A (4, 4) tiling

A (4, 4) tiling must have 4-sided regular figures that meet 4 to a corner. So the
figures have four 90-degree angles. So they are square, it seems. So it must be
the standard checkerboard tiling of the plane.

Figure 119.5: Planar (4, 4) tiling (www.freepik.com)

1We will define “reguilar” in the next section
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A (3, 4) tiling

A (3, 4) tiling must have 3-sided regular figures that meet 4 to a corner. So the
figures have three 90-degree angles. Where can we find a 90-90-90 triangle? In
the sphere, of course.

Figure 119.6: Spherical (3, 4) tiling (Tomruen, Wikipedia)

Eight 90-90-90 triangles fit together to tile S2. The triangles correspond to the
eight octants of 3-space. Alternately, the tiling is the projection of an octagonal
frame onto the sphere by a lantern at the center of the sphere.

Kaleidotile

You can produce figures like this with the Kaleidotile app by Jeff Weeks. It can
be downloaded from

• Kaleidotile: https:www.geometrygames.org/KaleidoTile

Let’s take a look at it on my computer.

You can adjust the colors. You can move around in hyperbolic space with the
mouse. The motion has momentum. The program is fast and smooth.

Here is a screenshot:
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Figure 119.7: Kaleidotile screenshot

You can move the control point in a 2-dimensional space of possibilities. This
varies the geometry without changing the symmetry group.

You can change the symmetry group. If you do that, the tiling will close up
differently to produce either a hyperbolic space, a Euclidean plane, or a sphere.

Exercise 119.1 Produce the above three tilings using Kaleidotile.

Malin Christersson

You can do similar things at:

• M. Christersson, Interactive hyperbolic tiling in the Poincaré disc,
https:www.malinc.se/noneuclidean/en/poincaretiling.php

Here is a screenshot:

Figure 119.8: M. Christersson website

He also has Geogebra constructions, a discussion of reflection groups, and an
animation of inversion of the circle:
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• M. Christersson, Inversion in circle,
https:www.malinc.se/noneuclidean/en/circleinversion.php

We end with an exercise:

Exercise 119.2 What is the Schäfli symbol of the following bat-angel pattern
by Escher?

Figure 119.9: Circle Limit (M. C. Escher)

§120 A regular pentagon with five right angles

Let’s investigate the right-angle pentagon that we depicted in the last section.
Here is a picture, centered at the point 0 of the Poincaré disk model:

Figure 120.1: Pentagon with five right angles (Lixin Liu)

First of all, why should this pentagon exist?
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Here is a quick argument. We will construct a regular pentagon with the desired
angles. By regular, we mean that all angles are equal and all sides are equal.

Draw 5 rays that meet at a point at 72 degrees. On each of the rays, mark a
point at distanct d from the origin. Draw a pentagon with these five points as
corners. By the symmetry of the construction, it is regular.

IMAGE: A regular hyperbolic pentagon

When d is small, the figure is nearly Euclidean. A Euclidean regular pentagon
has interior angles of 108◦. So the angles are nearly 108◦ when d is small.

As d→∞, the angles go to zero. This can be seen in the picture:

IMAGE: Regular hyperbolic pentagons of various sizes

Then by the Intermediate Value Theorem, there will be some d such that the
angles are 90◦.

Such a pentagon is impossible in R2, but exists in H2.

Using this construction, one can create regular polygons in H2 with every num-
ber of sides and a large range of angles.

Exercise 120.1 Argue that the symmetry group of a regular pentagon is the
dihedral group D5 of order 10. There are 5 rotations (including the identity)
and 5 reflections.

Hyperbolic billiards

I had an interesting experience last year. Jeff Weeks was in town and demon-
strated his virtual reality software for hyperbolic billiards in the main hall of
this building.

Figure 120.2: Hyperbolic billiards VR system (J. Weeks paper)
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The VR user experiences hyperbolic billiards. He is in hyperbolic 3-space look-
ing down on a pentagonal billiards table. He can shoot the ball.

Hyperbolic lines look straight to him, because their projections onto his visual
sphere are indeed straight. But they move around strangely as he moves.

The hyperbolic billiard board is a regular pentagon with 5 right angles. In real
physical space, the VR user circles a normal square table. He can feel one corner
at a time. He experiences it as 5-sided because of the VR visuals. He can shoot
the ball with a physical billiard cue and bridge, wired electronically. A helper
has to follow him to keep the wires from tangling.

Weeks’ system also does billiards in spherical space and in the 3-torus (Euclidean
three space with cubical repetition).

Weeks explains the VR billiards system in

• J. Weeks, Non-Euclidean Billiards in VR
https:archive.bridgesmathart.org/2020/bridges2020-1.pdf.

§121 A tiling of H2 by triangles

Consider the following tiling (tesselation, Parkettierung) of the hyperbolic plane.

Figure 121.1: (3,8) tiling (Parcly Taxel, Wikipedia)

It consists of triangles bounded by hyperbolic lines, shown in blue. You can see
that the triangles are equilateral because all corner angles are the same, so by
formula (131.3), the sides are equal.

What is the value of this corner angle? Eight triangles meet at each vertex. So
the common corner angle is

360◦

8
= 45◦.
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This would be impossible in Euclidean space; there, equilateral triangles have
60-degree angles.

Here is another image of this tiling, displaced slightly by a hyperbolic isometry.

Figure 121.2: Another view of the (3,8) tiling (Anton Sherwood, Wikipedia)

The symmetry group

The triangles appear to get smaller and smaller as z → ∂B1, but in the hyper-
bolic metric, they are all the same. Indeed, you can take any triangle to any
other by a hyperbolic isometry.

Not just that, but the whole pattern has many symmetries.

To see this, let us define reflection in a hyperbolic line. Let L be a hyperbolic
line in B1.

Definition 121.1 Reflection in L is defined to be the transformation

σL := σC |B1 : B1 → B1

where C is the cline such that L = C ∩B1.1

It is easy to see that σL is a bijection of B1. By Theorem 105.1, σL is a
hyperbolic isometry.

IMAGE: Reflection in a hyperbolic line

Then in the above tiling, reflection in any of the blue hyperbolic lines is a
symmetry of the pattern. By this we mean that each such reflection takes the
whole pattern to itself. That already yields an infinite number of symmetries.
But by composing these reflections, we get many more. For example, we get
many hyperbolic translations and many hyperbolic rotations.

1We will use the symbol σ for both σC and σL without causing confusion.
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Exercise 121.1 Besides reflections in the blue lines, are there any other reflec-
tions that preserve the tiling?

Let T denote the tiling. To give T a set-theoretic meaning, we could, for
example, define T to be the union of the blue hyperbolic lines, or the collection
of all the triangles. In either case, we can recover the geometric content of the
tiling from this stored information.

Define the symmetry group of T to be

Sym(T ) := {h ∈ Isom(H2) : h(T ) = T }.

Then we have the following proposition, which we won’t prove.

Proposition 121.2 Sym(T ) is generated by hyperbolic reflections.

But we actually don’t need so many reflections.

Exercise 121.2 x

a) What is the minimum number of reflections needed?

b) Is Sym(T ) generated by reflections in the blue lines?

A clue to understanding symmetry groups is given at Malin Christersson, https:
www.malinc.se/noneuclidean/en/poincaretiling.php. This website has in-
teractive hyperbolic tilings and some interesting explanations.

Other tilings with the same symmetry group

Here is an (8, 3) tiling of the hyperbolic plane:

Figure 121.3: Hyperbolic (8, 3) tiling (via Kaleidotile)
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It has 8-sided figures that meet 3 to a corner. It is dual to the (3, 8) tiling above.
It can be obtained from the (3, 8) by joining the centers of the triangles in the
(3, 8) tiling by new edges, then erasing the old edges.

Since they determine each other, the (3, 8) tiling and the (8, 3) tiling have the
same symmetry group.

Here is a more complicated tiling. It has the same symmetry group as the
previous ones. You can get it on Kaleidotile by adjusting a parameter.

Figure 121.4: Another tiling with the same symmetry (via Kaleidotile)
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Chapter 42

Large size of the hyperbolic
plane

§122 Four crucial differences

What is life like in hyperbolic space?

In the next week or two, I would like to explore four crucial ways that the
hyperbolic plane differs from the Euclidean plane.

• Hyperbolic space is exponentially large
• Large triangles are thin (they look like tripods)
• Hyperbolic space is not scale-invariant (different at different scales)
• Objects in free motion experience tidal forces

Along the way we will introduce hyperbolic trigonometry.

I was inspired by Stephen J. Trettel,

• S. J. Trettel, Life in Hyperbolic Space: The dangers of life in a negatively
curved space, https:stevejtrettel.site/note/old/life-in-hyperbolic/

• S. J. Trettel, Math encounters: Life in curved space from magnifying
glasses to general relativity, https:www.youtube.com/watch?v=HgAGh4DmCRM

The first difference – exponentially large – is the topic of this chapter. We will
illustrate several aspects of it:

∗ Combinatorial growth
∗ Easy to get lost
∗ Distant objects appear exponentially small
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§123 Exponential growth from combinatorics

Note: This section replaces the first version that I gave in class.

Let us explore the exponential growth of the hyperbolic plane in purely intrinsic,
combinatorial terms.

The question

Consider the following (3, 8) tiling of the hyperbolic plane.

Figure 123.1: A (3, 8) tiling (Parcly Taxel, Wikipedia)

We will use the combinatorics of the triangulation to crudely estimate the cir-
cumference of a hyperbolic circle in terms of its radius.

The tiling consists of vertices, edges, and triangles. The vertices and edges form
a graph. The triangles are equilateral and are all the same size. The edges are
all the same length. Let us use this edge-length as a measuring rod.

Define a path to be a chain of edges. Then the number of edges along a path is
a crude way of gauging distance.
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Figure 123.2: A path of length 3 (Parcly Taxel, Wikipedia, modified)

Fix a vertix v0, for example the point 0. Let Dn to be the union of all triangles
that are within n edges of v0. To be precise, define Dn by

Dn := {all paths of length n starting at v0, together
with the triangles adjacent to them}

Dn is analogous to a disk of radius n (measured in edge-units). It looks like a
branching spider plant. It is sort of round. Not a circle, but roughly a circle.

Define the boundary ∂Dn of Dn to be the union of the edges that adjoin Dn on
one side but not the other. Define

|∂Dn| := #edges in ∂Dn.

Our goal:
Estimate the growth of |∂Dn| as a function of n

This is analogous to computing the circumference of a hyperbolic circle as a
function of its radius. Recall that

CH(d) = 2π sinh(d) ∼ πed

as d→∞. In analogy to this, we expect that

|∂Dn| ∼ Cecn

for some C, c as n→∞.

Discussion

We have
D0 = {v0}, |∂D0| = 0.
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The figure D1 consists of the eight triangles that touch v0, as shown:

Figure 123.3: The figure D1 (Parcly Taxel, Wikipedia, modified)

So

|∂D1| = 8.

The figure D2 consists of all the triangles that touch D1, even at one point, as
shown:

Figure 123.4: The figures D1 and D2 (Parcly Taxel, Wikipedia, modified)

We count and find

|∂D2| = 32.

Here is how we find that. D1 has 8 corners, and each corner “sprouts” 4 new
edges as shown:
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Figure 123.5: A corner sprouts 4 new edges (Parcly Taxel, Wikipedia, modified)

So there are 8 · 4 = 32 edges in ∂D2.

Based on this, we naively expect that each corner of Dn generates 4 edges of
∂Dn+1. Since the number of corners of Dn is the same as the number of edges
of ∂Dn, this would give

|∂Dn+1| = 4|∂Dn|.

That is: Each time we add 1 to the radius, we multiply the number of edges
around the circumference by a constant. This would yield

|∂Dn| = 2 · 4n, n ≥ 1.

This already gives the right idea: The hyperbolic plane grows exponentially fast.

But it’s not quite right. Look at the next iteration, when we go from D2 to D3:

Figure 123.6: (Parcly Taxel, Wikipedia, modified)

Notice that D2 has two kinds of corners. One kind gives rise to 4 new edges (in
pink). The other kind gives rise to 3 new edges (in aqua).
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If we count we find

• 8 aqua corners

• 24 pink corners

So the new number of edges is

|∂D3| = 8 · 3 + 24 · 4 = 120.

In the next section, we will prove:

1) Each corner of Dn gives rise to either 3 or 4 new edges of ∂Dn

2) So

3|∂Dn| ≤ |∂Dn+1| ≤ 4|∂Dn|.

3) So

2 · 3n ≤ |∂Dn| ≤ 2 · 4n

So we get

The number of edges in ∂Dn grows exponentially as n→∞

In fact, we will be able to compute |∂Dn| exactly.
A similar exponential growth is true of the “area” of Dn (the number of trian-
gles).

§124 Proof

We have

Proposition 124.1 The number of edges in ∂Dn grows like

|∂Dn| = CY n(1 + o(1))

where

C =
4√
3

= 2.309..., Y = 2 +
√

3 = 3.732...

Note that the multiplier Y = 3.732... is between 3 and 4, corresponding to the
fact that at each stage, some corners sprout 3 new sides, other corners sprout 4.
The fact that the number is closer to 4 suggests that the latter type of corner
predominates.
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A rough estimate

Let us build up to the proof.

The figures Dn can be generated recursively by the following rules

a) D0 = {v0}
b) Dn+1 consists of Dn, together with all the triangles that meet Dn.1

A closed path means a path that ends where it began.

A simple closed path means a closed path that does not visit any vertex twice.

We wish to distinguish the “pink” corners from the “aqua” corners.

Since 8 triangles meet at each vertex, the triangles have angles 45-45-45. We
notice from the pictures in the previous section that the “pink” corners, which
sprout 4 new edges, have a 90-degree interior angle. The “aqua” corners, which
sprout 3 new edges, have a 135-degree interior angle. We have the following
Lemma.

Lemma 124.2 For n ≥ 1,

a) The boundary of Dn is a simple closed path.

b) All corners of Dn have an interior angle of 90 or 135 degrees.

Note that a) is necessary for “interior angle” to make sense.

Remark: In particular, there are no inward corners of Dn, only outward. So Dn

is a convex body.

Proof We will prove it by induction.

It is true for D1. All corners of D1 are 90 degrees, and the boundary of D1 is a
simple closed path (an octagon).

Fix n. Suppose

a) The boundary of Dn is a simple closed path.
b) All corners of Dn are 90 or 135.

Let us prove the same thing for Dn+1.

Let P be a corner of Dn, and R a corner of Dn+1. We say P sprouts R if P is
connected to R by an edge. It is clear that

b′1) Each 90-degree (“pink”) corner P of Dn sprouts 5 new corners of Dn+1.

The middle 3 of these new corners are 90-degree corners and are sprouted
only by P .

The outer 2 of these new corners are 135-degree corners and are sprouted
by two adjacent corners of Dn.

1Triangles are closed sets, so a triangle might meet Dn at just one corner.
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IMAGE: A 90-degree corner of Dn and what it sprouts

b′2) Each 135-degree (“aqua”) corner Q of Dn sprouts 4 new corners of Dn+1.

The middle 2 of these new corners are 90-degree corners and are sprouted
only by Q.

The outer 2 of these new corners are 135-degree corners and are sprouted
by two adjacent corners of Dn.

IMAGE: A 135-degree corner of Dn and what it sprouts

From these properties, we see that locally, ∂Dn+1 is a simple closed path. We
conclude

a′) The boundary of Dn+1 is a simple closed path.1

and from b′1) and b′2) we conclude

b′) All the corners of Dn+1 are 90 or 135.

The Lemma follows by induction.

2

We can now prove the following proposition, as promised in the previous section.

Proposition 124.3 For n ≥ 1, we have

3|∂Dn| ≤ |∂Dn+1| ≤ 4|∂Dn|.

So
2 · 3n ≤ |∂Dn| ≤ 2 · 4n

Proof The number of corners of Dn equals |∂Dn|, and similarly for Dn+1. So
to track |∂Dn|, it suffices to track corners.

Each corner of Dn sprouts 4 or 5 corners of Dn+1. But in each case, two of the
new corners are shared with another corner of Dn. So effectively, each corner
of Dn gives rise to 3 or 4 corners of Dn+1. It follows that

3|∂Dn| ≤ |∂Dn+1| ≤ 4|∂Dn|.

Since
6 ≤ |∂D1| ≤ 8

(actually |∂D1| = 8), we get by induction

2 · 3n ≤ |∂Dn| ≤ 2 · 4n.

2

1A little more work is needed here.
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A precise calculation

We can calculate the precise number of sides. Let

an := number of 90-degree corners of Dn

bn := number of 135-degree corners of Dn.

Lemma 124.4 We have
a1 = 8, b1 = 0

and for n ≥ 1, we have the following recursion relations

an+1 = 3an + 2bn bn+1 = an + bn

Proof x

1. a1 = 8, b1 = 0 because D1 is an octagon with eight 90-degree angles.

2. By b′1) and b′2) of the previous proof,

• Each corner of Dn sprouts two 135-degree corners of Dn+1.

• Each 135-degree corner of Dn+1 is sprouted from two corners of Dn.

It follows that effectively, each corner of Dn gives rise to one 135-degree corner
of Dn+1. So

bn+1 = an + bn.

3. By b′1) and b′2) again,

• Each 90-degree corner of Dn sprouts three 90-degree corners of Dn+1.

• Each 135-degree corner of Dn sprouts two 90-degree corners of Dn+1.

• Each 90-degree corner of Dn+1 is sprouted from exactly one corner of Dn.

It follows that
an+1 = 3an + 2bn.

2

We now have a recursion relation for the number of corners of different types.
It can be solved exactly. We leave this as an exercise.

Exercise 124.1 x

a) Find exact formulas for an and bn.

b) Let cn := an + bn be the number of sides of Dn. Find the growth rate of cn.

c) Find the asymptotic ratio of 90-degree corners to 135-degree corners, i.e.
lim(an/bn).
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Here is how you do a): The recursion relation for the values(
an
bn

)
is expressed by multiplying by the coefficient matrix

M =

(
3 2
1 1

)
.

Find the eigenvalues and eigenvectors of this matrix, and use a linear combina-
tion to match the starting conditions. This will lead to an explicit formula of
the form

an = pY n + qZn, bn = rY n + sZn

where Y > 1, |Z| < 1, and Y,Z are the eigenvalues of M .

Then b) and c) are easy. In particular, b) leads to the formula

cn = (p+ r)Y n + lower order terms

which proves Proposition 124.1, once you get the values of Y , p, R.

Area and perimeter

A similar analysis yields the “area” of Dn.

Exercise 124.2 Define

|Dn| := #triangles in Dn.

a) Compute |Dn| as a function of n.

b) Compute limn→∞ |∂Dn|/|Dn|.

The remarkable thing is that the limit in b) is a positive, finite number.

This implies that asymptotically, the boundary triangles of Dn (i.e. triangles
adjacent to the boundary) form a fixed proportion of the total number of trian-
gles in Dn. This is a characteristic feature of hyperbolic space. We can express
it as follows:

The boundary of a large hyperbolic region
is roughly the same size as the region

This echoes the corresponding fact for the circumference and area of a hyperbolic
disk:

lim
d→∞

CH(d)

AH(d)
= lim
d→∞

2π sinh(d)

2π(cosh(d)− 1)
= 1.

Note that the analogous statement in Euclidean space are false: The circum-
ference of a disk is linear in d and the area is quadratic in d, so the limit is
zero.
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§125 Too much space

The hyperbolic plane is very large... Because of the exponential growth, it is
easy to get lost. And hard to find your way back.

Hyperrogue

One way to get intuition for the hugeness and lostness of the hyperbolic plane
is the Hyperrogue program, available at

• Hyperrogue: https:roguetemple.com/z/hyper/
Here is what it looks like:

Figure 125.1: Hyperrogue (screenshot)

You can play in the browser but it’s better to download the app. It’s easy
to get into, but under the surface it has extremely diverse features and many
visualization settings.

Random walks

Suppose you wander at random on the standard square lattice in the Euclidean
plane.

291 Table of Contents

https:roguetemple.com/z/hyper/


PART III CHAPTER 42. LARGE SIZE OF THE HYPERBOLIC PLANE

Figure 125.2: Square lattice (Boa Python, Wikipedia, created with UploadWizard)

That is, at each step, you select a random direction (up, down, right or left) and
move one unit in that direction. This is called a random walk, or Drunkard’s
Walk.

It turns out that on this lattice, with probability 1, you will return to your
starting point infinitely often. Such a random walk is called recurrent.1

Now try the same stunt in hyperbolic space, for example with the (3, 8) tiling
of the last section.

Figure 125.3: A (3, 8) tiling (Parcly Taxel, Wikipedia)

Again, we move from vertex to vertex, picking a random edge outward from the
vertex at each step.

It turns out that on this lattice, or any hyperbolic lattice, with probability 1,
you will wander off to infinity. Such a random walk is called transient.2

1This is true in R and R2, but not in higher dimensions.
2There is also the following remarkable fact: with probability 1, the random walk will tend

toward one particular point on the circle at infinity, at roughly constant speed, allowing for
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This reflects the fact that the hyperbolic plane is exponentially large. The
drunkard can’t find his way home.

Let me show a video that illustrates this, but first some more explanation.

Brownian motion is obtained from a random walk by taking shorter and shorter
steps, but doing them faster and faster. We are no longer constrained to the
lattice; we can pick any random direction for each step. In the limit as the step
size goes to zero, we get a jagged, but continuous path.

IMAGE: Brownian motion

Now, let’s add a new twist. Suppose the Brownian motion is the path of an ant.
At random intervals, the ant reproduces, generating two ants. This doubling
happens randomly at a certain rate.1 After the split, we have two ants moving
by Brownian motion. Then three, four, etc. This is called branching Brownian
motion.

Here is a video that illustrates this:

• ZenoRogue, Branching Brownian motion in the hyperbolic plane,
https:www.youtube.com/watch?v=sXNI_i6QZZY

Note: In the video, the viewer moves with the moving ant, so that he can see
it from reasonably close. Since the ants tend to disperse and recede, it is only
possible to follow one of them. It would be cooler if you could easily apprehend
them all at once.

Here is the explanation under the video:

Because of the exponential growth, more directions take our explorer
away from the starting point, than bring them back. So while in
Euclidean space, we are roughly2 as likely to go closer or further
from the starting point, and the average distance after time t is

√
t,

in hyperbolic space we tend to go away (at a roughly constant speed).
Even if the explorers reproduce from time to time, it is likely that
none of the descendants will ever return! (This depends on how fast
they reproduce, relative to the curvature of the world: intuitively,
even though the population grows exponentially with time, the space
to explore grows even faster.

In summary:

• If the ants reproduce slowly, the population disperses to infinity
• If the ants reproduce quickly enough, the population gradually builds up

to infinite density everywhere.

fluctuations. Driven by random, uncorrelated motion, the path manages to pick an asymptotic
direction.

1A Poisson process.
2Only roughly; they are somewhat out of balance, especially as n gets larger.
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The question is which is to be master – the exponential dispersion of the hyper-
bolic plane or the exponential growth of a population.

The same Youtube channel has more videos on various geometry topics including
hyperbolic geometry.

• ZenoRogue channel:
https:www.youtube.com/channel/UCfCtbgiDxwFtlqrbEralvTw

§126 Objects look exponentially small

We’ll explore the visual effects of the large size of the hyperbolic plane.

The basic observation is this:

A given “visual angle” in the hyperbolic plane includes an exponen-
tially greater peripheral length than does the corresponding angle in
the Euclidean plane.

Let us investigate the consequences.

Let S(d) be a circle of hyperbolic radius d, and consider the arc A of the circle
that is cut out by two central rays making an angle α.

α arc A

d

Figure 126.1: Arc A

The entire circumference of S(d) is

2π sinh(d).

The arc A takes up a fraction
α

2π

of that. So the length of A is

lengthH(A) = α sinh(d).
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α α sinh(d)

d

Figure 126.2: Peripheral length

This has several consequences:

1) An object of a given size at a far distance subtends a much smaller visual
angle than it would in the Euclidean plane.

Suppose X is an object of a fixed hyperbolic radius r. Suppose X is at distance
d� 1 from the viewer. Then from the above, we have

r ≈ α sinh(d)

(it is not exact because X is not an arc). That is, the visual angle subtended
by X is

α ≈ r

sinh(d)
.

This decays exponentially as d→∞, rather than like 1/d as in Euclidean space.

Consequences:

2) It is harder to aim in the hyperbolic plane. Objects look smaller.

3) If an object recedes at a constant rate, it shrinks much faster than it would
in the Euclidean plane.

4) Stars are much dimmer in hyperbolic space than in Euclidean space.

We can deduce this from conservation of energy. Consider a star radiating light
at a constant rate. The light energy that crosses a circle of radius d in a given
time is independent of the radius, so the energy density decays like

C

sinh(d)

making for a very dim star.

S. Trettel says in Life in Hyperbolic Space

In this hyperbolic world no matter how carefully we scoured the
skies, no matter how sensitive of a telescope we built, we would never
come to know that space is teeming with other island universes just
like our own.
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I’m not sure I agree. If other stars are distributed roughly evenly in the hy-
perbolic plane, then the exponentially large number of galaxies within a given
distance should exactly compensate for the exponentially dim light from each
star.

If you integrate this over all radii from 0 to ∞, you find that each shell (once
they are large enough to contain stars) contributes a roughly equal amount of
energy. So you get an infinite amount of light descending on each point in space.
This is called Olbers paradox. It holds equally in Euclidean space and hyperbolic
space.

How to escape this paradox? It only works if light energy is never lost or
absorbed. Alternately, you can invoke modern cosmology.

5) Distant hyperbolic lines look small.

Suppose you are in the Euclidean plane, and you are looking at a line L from
the side. No matter how far away L is, it blocks a visual angle of 180 degrees.
Even as far away as Orion, it would take up half the sky.

IMAGE: Looking at a distant Euclidean line

In the hyperbolic plane it is quite different. As L recedes, it takes up a smaller
and smaller visual angle.

IMAGE: Looking at a distant hyperbolic line
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Chapter 43

Hyperbolic triangles,
especially large ones

§127 Angle defect

Here is a typical hyperbolic triangle. It has corners A,B,C and angles α, β, γ.

α

β γ

A

B

C

Figure 127.1: Triangle

A fundamental fact about hyperbolic geometry is the following.

Theorem 127.1 In the hyperbolic plane, the angle sum

Σ := α+ β + γ

of a triangle is less than π.
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Proof x

In the Poincaré disk model, move the triangle so that 0 is in its interior. Then
draw the straight line segments

(AB)euc, (BC)euc, (CA)euc

in the Euclidean metric of B1. This forms a Euclidean triangle

(ABC)euc.

It contains the hyperbolic triangle

(ABC)hyp.

IMAGE: Hyperbolic triangle inside Euclidean triangle

The proof is now obvious from the picture. Let

α′, β′, γ′

be the angles of the Euclidean triangle (ABC)euc, and

α, β, γ

the angles of the hyperbolic triangle (ABC)hyp. Then

α < α′, β < β′, γ < γ′,

so

α+ β + γ < α′ + β′ + γ′

= π.

2

Angle defect

We define the angle defect of a hyperbolic triangle to be

π − (α+ β + γ).

By the Theorem, it is always positive.

Indeed, the larger the triangle, the smaller the angle sum. In fact, by varying
the size of the triangle, we see that we can obtain any number in the interval
(0, π) as the angle sum.

This reflects the lack of scale invariance in hyperbolic geometry – large triangles
are different from small triangles. We will have more to say about this later.
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Hyperbolic triangles can be contrasted with spherical triangles, where there is
an angle excess. For example, in the sphere, there is a 90-90-90 triangle.

IMAGE: 90-90-90 triangle in the sphere

It has angle sum
Σ = 90 + 90 + 90 = 270

and angle excess
270− 180 = 90.

§128 Ideal triangles

We call a hyperbolic triangle large if its vertices are very far apart. In a large
hyperbolic triangle, the angles are small. This can be seen in the figure.

IMAGE: A large hyperbolic triangle

As the vertices recede from each other, the angles converge to zero.

We can even take the corners to be on the circle at infinity.

Definition 128.1 Let A, B, C be three distinct points at infinity. The ideal
triangle determined by A, B, C is the figure bounded by the hyperbolic lines

PQ, QR, RP.

Here is an ideal triangle:

IMAGE: An ideal triangle

Here are several ideal triangles:

Figure 128.1: Some ideal triangles (Gandalf61, Redrobsche, Wikipedia)

299 Table of Contents



PART III CHAPTER 43. HYPERBOLIC TRIANGLES

Proposition 128.2 All ideal triangles are congruent.1

Proof This follows from triple transitivity of Möb(B1) on the circle at infinity
and the uniqueness of hyperbolic lines connecting two points at infinity.

2

We will see in §143 that there is a universal upper bound for the area of a
triangle in the hyperbolic plane, and it is realized by an ideal triangle with area
π. This fact was already prefigured by Gauss (see Loustau, Part VI : Plane
hyperbolic geometry).

§129 Triangles are thin

Recall the four crucial differences of the hyperbolic plane to the Eucldean plane
that I previously advertised:

• Very large
• Thin triangles
• Not scale-invariant
• Tidal forces

We have now come to the second of these - thin triangles.

Continuing the thoughts in the previous section, we can see that the structure
of a large hyperbolic triangle is as follows:

a) The corners are very far apart (by definition)
b) There is a central area of bounded size
c) Outside of the central area, the three “wings” of the triangle are very thin.

Here is a more precise way to say it. Define a “tripod” as the union of three
distinct hyperbolic rays (i.e. hyperbolic half-lines) that meet at 120 degrees:

1Isometric.
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Figure 129.1: Tripod

Here is a tripod in a different position:

IMAGE: Another tripod

Proposition 129.1 (Hyperbolic triangles are thin) There is a universal
constant dthin such that for every triangle T in the hyperbolic plane, there exists
a tripod Y such that

Every point of T lies within distance dthin of Y .

IMAGE: The triangle T lies within bounded distance of the tripod Y

This is obviously false in the Euclidean plane.

One can calculate the optimal value of dthin explicitly. It is less than 1. See
§135.

Proof of Proposition x

1. First let us check that the conclusion of the proposition is true for ideal
triangles. Consider an ideal triangle T in “standard position” in B1, that is, the
vertices are

1, ω, ω2

where ω = −1/2 + (
√

3/2)i is a cube root of unity. Let Y be the tripod

[0, 1) ∪ [0, ω) ∪ [0, ω2).

IMAGE: An ideal triangle containing a tripod

Then an explicit calculation shows that the sides of T approach the three rays
of Y exponentially fast as they go out to infinity (see Serie 12, Exercise 1).

Even without doing this calculation, one can see immediately that the distance
of a side of T to a ray of Y goes to zero as they go out to infinity, as follows.
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Let S be a side of T with endpoint z = 1, and let R be the ray of Y with
endpoint z = 1.

IMAGE: The side S approaches the ray R

Then because S and R are tangent at z = 1, the Euclidean distance between
them decays quadratically like

O((1− |z|)2)

whereas the multiplication factor for the hyperbolic metric is

O

(
1

1− |z|

)
.

So the hyperbolic distance between S and R as z → 1 is

O((1− |z|)2) ·O
(

1

1− |z|

)
= O(1− |z|)

which goes to zero as we approach the circle at infinity.

Therefore the function

D(z) := distH(z, Y ), z ∈ T,

goes to zero as z → S1. It follows that D(z) has a finite maximum on T . Call
this maximum dthin.

2. Next let T ′ be any triangle in H2. It is clear that T ′ is contained in some
ideal triangle T .

IMAGE: Any triangle is contained in some ideal triangle

Let Y be a tripod for T as in Step 1. Then

max
z∈T ′

distH(z, Y ) ≤ max
z∈T

distH(z, Y ) ≤ dthin.

2

Exercise 129.1 Let Y ′ be the union of three rays meeting at their endpoints at
arbitrary angles, none of which exceed 180 (see Figure 129.2). Show that there
is a universal constant c such that Y ′ lies within c of some tripod Y .

Figure 129.2: A generalized tripod, with arbitrary angles
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Chapter 44

Hyperbolic trigonometry

§130 Hyperbolic version of Pythagoras’ Theorem

We will present the hyperbolic analogue of the Pythagorean Theorem.

Let ABC be a right triangle with the right angle at C. Let a, b, c be the lengths
of the respective opposite sides.

a

bc

Figure 130.1: Right triangle

Proposition 130.1 The side-lengths of a right triangle satisfy

cosh(c) = cosh(a) cosh(b)

This formula doesn’t look anything like the usual Pythagorean Theorem. It
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has multiplication instead of addition, and it is not homogeneous (i.e. scale-
invariant) in the variables a, b, c.

But if a, b, and c are small, then by Taylor exansion we get

1 +
1

2
c2 + · · · =

(
1 +

1

2
a2 + · · ·

)(
1 +

1

2
b2 + · · ·

)
which simplifies to

c2 = a2 + b2 + · · ·

where the omitted terms are of fourth order and higher. So the usual Pythagorean
Theorem becomes asymptotically valid on very small scales, where the metric
strongly resembles Euclidean geometry.

Proof x

Compute using Theorem 107.1

cosh(c) = 1 +
2|P −Q|2

(1− |P |2)(1− |Q|2)

= 1 +
2(|P |2 + |Q|2

(1− |P |2)(1− |Q|2)

=
(1− |P |2)(1− |Q|2) + 2(|P |2 + |Q|2)

(1− |P |2)(1− |Q|2)

=
(1 + |P |2)(1 + |Q|2)

(1− |P |2)(1− |Q|2)
.

By the same Theorem,

cosh(a) = 1 +
2|P |2

1− |P |2
=

1 + |P |2

1− |P |2

and similarly,

cosh(b) =
1 + |Q|2

1− |Q|2
.

So
cosh(c) = cosh(a) cosh(b).

2

§131 Hyperbolic trigonometry formulas

The last section was just the beginning. There is a wonderful theory of hyper-
bolic trigonometry, with analogues of

• Law of sines
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• Law of cosines

• Plus one extra relation

They are like those of in Euclidean space, but more complicated.

The main difference is that the trigonometry formulas are not scale-invariant,
but have nonlinear multiplicative factors that depend on the length scale.

Here is a typical triangle in the hyperbolic plane, with side lengths a, b, c and
corresponding opposite angles α, β, γ.

α

β γ

a

bc

Figure 131.1: Labeled triangle

We have the following three trigonometric formulas.

Hyperbolic law of sines:

sin(α)

sinh(a)
=

sin(β)

sinh(b)
=

sin(γ)

sinh(c)
(131.1)

Hyperbolic law of cosines:

cosh(c) = cosh(a) cosh(b)− sinh(a) sinh(b) cos(γ) (131.2)

This formula is suitable for side-angle-side problems, where the data are two
sides a, b and the angle γ between them. Then you get the other side.

It is also useful for side-side-side problems. If you know all three sides, you can
determine the angles.

Notice that when γ = π/2, we have a right triangle and the formula reduces
to the hyperbolic Pythagorean theorem. The same thing happens with the
Euclidean law of cosines.
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The extra law:

cos(α) = − cos(β) cos(γ) + sin(β) sin(γ) cosh(a) (131.3)

Often (131.2) and (131.3) together are called the hyperbolic law of cosines.

Note that the “extra” law, which seems a little mysterious at this point, can be
obtained from the hyperbolic law of cosines by reversing the roles of angles and
lengths and of circular trig functions and hyperbolic trig functions. So the two
are dual to one another in some way.

The “extra” law is good for angle-angle-angle problems. If you know all three
angles, you can determine the sides. (You can’t do this in Euclidean space.)

The “extra” law seems to be needed in order to tame the extra degree of freedom
introduced by the lack of scale invariance in hyperbolic geometry. Roughly
speaking.

Exercise 131.1 Use the “extra law” to deduce the side-length of a regular pen-
tagon with 90 degree angles. Hint: Decompose the pentagon into five congruent
triangles.

Final remark: Notice the following pattern in all three formulas above: We
take normal “circular” trig functions of angles, but hyperbolic trig functions
of lengths. The hyperbolic trig functions make hyperbolic trigonometry scale-
dependent.

§132 Euclidean limits

Let us find what these three laws reduce to when we assume that a, b, c are very
small. We should get the corresponding Euclidean laws in the limit. A question
is what happens with the “extra” law.

Law of sines: For small x, we have

sinh(x) = x+ · · · .

So we get in the limit
sin(α)

a
=

sin(β)

b
=

sin(γ)

c

the Euclidean law of sines.

Law of cosines: For small x, we have

cosh(x) = 1 +
x2

2
+ · · ·
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So if a, b, c are very small, we get

1 +
c2

2
+ · · · =

(
1 +

a2

2
+ · · ·

)(
1 +

b2

2
+ · · ·

)
− (a+ · · · )(b+ · · · ) cos(γ)

which reduces to

c2

2
+ · · · = a2

2
+
b2

2
− ab cos(γ) + · · ·

In the limit we get
c2 = a2 + b2 − 2ab cos(γ)

the Euclidean law of cosines.

The extra law: What will become of this law?

As the size of the triangle goes to zero, a → 0. So cosh(a) → 1. So the cosh
factor simply falls away. In the limit we obtain

cos(α) = − cos(β) cos(γ) + sin(β) sin(γ)

But we recognize the right-hand side as the angle sum formula for cosine. We
get

cos(α) = − cos(β + γ)

= cos(π − β − γ).

Using the fact that both α and π − β − γ lie in (0, π), this implies

α = π − β − γ.

So we get in the limit
α+ β + γ = π,

the usual angle-sum relation in the Euclidean plane. We have recovered a fa-
miliar feature of Euclidean geometry.

In the hyperbolic plane, the “extra” law expresses a relationship between the
angles that depends on the length of one side. This contrasts with Euclidean
space, where the angle relationship is independent of scale.

§133 The shortest path is mostly radial

Let us use hyperbolic trigonometry to study the asymptotics of a right triangle
as it grows larger. In the process, we will learn that shortest paths are nearly
radial.

Consider the following figure, consisting of two rays that meet at P at a right
angle. We have placed P at 0 for convenience.
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P

Figure 133.1: Two rays at a right angle

Proceed a distance d along each ray to find points Q, R. That is,

dH(P,Q) = dH(P,R) = d.

d

d
c

●

●

PQ

R

Figure 133.2: Triangle PQR

We obtain a right-angled isoceles triangle PQR.

Next consider a circle of hyperbolic radius d about P . It passes through Q and
R. We call the arc of this circle subtended by the central angle a peripheral arc.
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d

d

●

●

PQ

R

p

Figure 133.3: Peripheral arc from Q to R

Now we send d→∞. The points Q, R slide along tracks to infinity. We ask:

Question What are the asymptotics of the triangle PQR as d → ∞? In
particular, how do the following quantities behave:

a) The length p of the peripheral arc from Q to R

b) The distance c = dH(Q,R)

c) The distance x from P to the segment QR.

Here is a picture of the quantities we seek:

d

d
c

●

●

x
PQ

R

p

Figure 133.4: Study these quantities as d→∞
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Solution

Find p.

We already found the peripheral length in §126. Indeed, the circumference of
the circle of radius d is

CH(d) = 2π sinh(d)

and we are looking at a quarter circle, so

p =
1

4
· 2π sinh(r)

=
π

2
sinh(r).

So as d→∞, the peripheral length p grows exponentially.

Find c.

We observe by the triangle inequality,

c = dH(Q,R)

≤ dH(Q,P ) + dH(P,R)

= d+ d

= 2d.

So the distance c = dH(P,Q) grows at most linearly. So the peripheral arc is
very inefficient compared to the straight-line distance between P and Q.

Let us calculate c explicitly, and obtain its asymptotics as d→∞.

Since PQR is a right triangle with hypotenuse c, the hyperbolic Pythagorean
theorem (Proposition 130.1) yields

cosh(c) = cosh2(d)

so
c = arccosh(cosh2(d)).

This gives us c in terms of d.

Let us compute the asymptotics of c as d → ∞. It is clear that c → ∞ when
d→∞. So cosh(c) is effectively (1/2)ec. Specifically, we have

cosh(c) =
1

2
(ec + e−c) =

1

2
ec(1 + e−2c).

Similarly,

cosh2(d) =

(
1

2
(ed + 2 + e−d)

)2

=
1

4
e2d(1 + 2e−2d + e−4d).
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Setting these equal, we get

ec(1 + e−2c) =
1

2
e2d(1 + 2e−2d + e−4d).

Taking the logarithm,

c+ log(1 + e−2c) = − log 2 + 2d+ log(1 + 2e−2d + e−4d)

which we rewrite as

c+ log(1 + o(1)) = − log 2 + 2d+ log(1 + o(1))

as c, d→∞. Recall the Taylor expansion

log(1 + u) = u− u2 + · · · = O(u).

Applying this, we get

c+ o(1) = − log 2 + 2d+ o(1).

So

Proposition 133.1 As d→∞,

c = 2d− log(2) + o(1).

So c grows like 2d minus a bounded error. So dH(Q,R) is only a little smaller
than what we get if we went along the piceswise-linear path

Q→ P → R

which comes all the way back to P before going out to R.

Find x

Let PM be the perpendicular from P to QR with foot M . By symmetry, M is
the midpoint of QR. We have

x = distH(P,QR) = dH(P,M)

(see §110). Here is a figure.
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●

●

x

PQ

R

M
●

d

c/2

Figure 133.5: Distance x

We make the following striking observation:

As d→∞, x converges to a finite value x∞.

Here is the picture:

M

x

P

●

●
∞

∞

Figure 133.6: Distance x∞

This is in stark contrast to the Euclidean case, where x goes to infinity when d
does.

Let us compute x∞. By symmetry, PMQ is a right triangle, with right angle
at M and hypotenuse d. The other two sides are c/2 and x. So we get by the
hyperbolic Pythagoren theorem,

cosh(d) = cosh(c/2) cosh(x). (133.1)

This gives x in terms of c and d, hence x in terms of d.
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Let us compute
x∞ := lim

d→∞
x.

Equation (133.1) becomes

1

2
(ed + e−d) =

1

2
(ec/2 + e−c/2) cosh(x).

Substitute
c = 2d− log(2) + o(1)

and get

ed + e−d = (ed−log(2)/2+o(1) + e−d+log(2)/2+o(1)) cosh(x).

Divide by ed, get

1 + e−2d = (e− log(2)/2+o(1) + e−2d+log(2)/2+o(1)) cosh(x).

Pass d→∞, get

1 =
1√
2

cosh(x∞)

So

Proposition 133.2 x converges to the finite limit

x∞ = arccosh
√

2 = 0.88137 . . .

That is, as Q and R go to infinity along perpendicular tracks, their midpoint
converges to a point M∞ at distance 0.88137... from P . See Figure 133.6.

We can think of the limit figure as a right triangle with two vertices at infinity
and angles

0, 0, π/2.

All three sides have infinite length, but the “width” x∞ is finite.

We conclude from the Proposition that for d large, the shortest path from Q to
R comes nearly all the way back to P , then goes back out again.

Summary

We summarize our findings as follows. When d is very large:

• The straight hyperbolic distance from Q to R is much shorter than trav-
eling along the peripheral arc.

• The shortest path from Q to R comes nearly all the way back to P , then
goes back out again.

• The shortest path from Q to R saves hardly any length over coming all
the way back to P , then going out again.

The hyperbolic plane is like a metro system where the subway lines radiate out
from the center, and there are no “ring roads”. Yet any point can be the center.
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Exercises

Exercise 133.1 In calculating x∞, we could have used the “extra law” applied
to the 0-90-45 triangle PMQ∞. This works even though there is a point at
infinity. Carry this out.

Exercise 133.2 Repeat all of the above estimates for an arbitrary central angle
θ, as shown in the figure.

d

d

p

●

●

c

x

Figure 133.7: Quantities p, c, x
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Chapter 45

Lack of scale invariance

§134 Inscribed circle

We can inscribe a circle in an ideal triangle.

Figure 134.1: Inscribed circle

Let us calculate its radius.

Proposition 134.1 The inscribed circle in an ideal triangle has radius

rideal =
log(3)

2
≈ .54930...

Proof x
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Let the ideal triangle be ABC. Let O be the center of the inscribed circle. It
touches the lines

AB, BC, CA

at points
C ′, A′, B′.

Figure 134.2: Inscribed circle

Now consider the triangle
OBA′.

It is a 0-60-90 triangle. The sought-for radius is

rideal = dH(O,A′).

So we have a triangle where we know the three angles, and want to find one of
the sides.

In Euclidean space we could not hope to do this, because the angles don’t tell
you the size. A triangle can be scaled to any size without changing the angles.

But in hyperbolic space, using the “extra law”, the angles tell you the size of the
triangle. The extra law says

cos(α) = − cos(β) cos(γ) + sin(β) sin(γ) cosh(a),

where α, β, γ are angles and a is the side opposite α. It works even for the
infinitely large triangle OBA′, as can be seen by taking a limit. We take

α = ∠OBA′ = 0, β = ∠A′OB = 60, γ = ∠BA′O = 90.

Then
a = dH(O,A′) = rideal.
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Inserting these values, we get

cos(0) = − cos(90) cos(60) + sin(90) sin(60) cosh(c).

That is,

1 = −0 · 1

2
+ 1 ·

√
3

2
cosh(c).

So

c = arccosh

(
2√
3

)

= log

 2√
3

+

√(
2√
3

)2

− 1


= log

(
2√
3

+
1√
3

)
= log(

√
3)

=
log(3)

2
.

2

§135 Thin triangles again

Recall Proposition 129.1, which says any hyperbolic triangle is close to a tripod
(“triangles are thin”). We now are in a position to compute the optimal constant
exactly. We can restate Proposition 129.1 more precisely:

Proposition 135.1 For every hyperbolic triangle T , there exists a 120-tripod
Y such that

max
z∈T

distH(z, Y ) ≤ dthin

where
dthin := arcsinh(1/2) ≈ 0.48121.

Furthermore, this constant is optimal.

Proof x

1. By optimal, we mean that dthin is the smallest constant that works for all
triangles. Let us calculate it.

Here is another way to understand dthin. Each triangle has its own specific
constant – the smallest constant that works for that particular triangle, with
the best choice of tripod. Then dthin is the supremum of the specific constants
of all triangles.
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As we saw in the proof of Proposition 129.1, the ideal triangles are the largest,
so they have the largest specific constant. So the optimal constant is precisely
the specific constant for an ideal triangle.

Let T be an ideal triangle like in the last section. Erase the inscribed circle,
but keep the points A′, B′, C ′. Inside T , we can draw a 120-tripod Y with
endpoints at A, B, C:

Figure 135.1: Tripod

Note that A,O,A′ lie along a hyperbolic line, with A at infinity.

Now Y is the tripod that minimizes the maximum distance

max
z∈T

distH(z, Y ′)

among all choices of tripod Y ′. (This is intuitively clear.) It follows that the
optimal constant is realized by the pair (T, Y ). That is, the optimal constant is

dthin = max
z∈T

distH(z, Y )

for the choice of T , Y shown in the figure.

Evidently,

A′, B′, and C ′ are the points of T that are farthest from Y . (135.1)

To see this, observe that for z lying in the ray A′B, we have

distH(z, Y ) = distH(z,OB)

and as z moves from A′ to B, the latter quantity is decreasing. So its maximum
on the ray A′B is at z = A′.
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By symmetry we have a similar statement for the rays A′C, B′A, B′C, C ′A,
C ′B. Statement (135.1) follows.

So

dthin = max
z∈T

distH(z, Y ) = distH(A′, Y ).

2. It remains to compute dH(A′, Y ).

The figure has the same symmetry group as an equilateral triangle in the Eu-
clidean plane, namely the dihedral group D3 of order 6. So the six central angles
(for A,C ′, B,A′, C,B′) are all equal. So

∠A′OB = π/3.

Drop a perpendicular from A′ to the ray OB. Let X be the base of the perpen-
dicular.

Figure 135.2: A′ is the farthest point on T from Y

By Proposition 109.2,

distH(A′, OB) = dH(A′, X)

So

dthin = distH(A′, Y ) = distH(A′, OB) = dH(A′, X).

To compute this, consider the right triangle OXA′:
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Figure 135.3: Tripod

It is a right triangle with angles

β := ∠A′OX = π/3, γ := ∠OXA′ = π/2.

The angle α := ∠XA′O is unknown, but it’s not π/6. The opposite sides to β
and γ have lengths

b := dH(X,A′) = dthin, c := dH(O,A′) =
log(3)

2
.

Use the hyperbolic law of sines to find b. This reads

sin(β)

sinh(b)
=

sin(γ)

sinh(c)
.

So

sinh(dthin) = sinh(b)

=
sin(β)

sin(γ)
sinh(c)

=
sin(π/3)

sin(π/2)
sinh(c)

=

√
3/2

1

1

2
(ec − e−c)

=

√
3

4

(√
3− 1√

3

)
=

1

4
(3− 1)

=
1

2
.
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So

dthin = arcsinh(1/2)

= log(1/2 +
√

(1/2)2 + 1)

= 0.48121...

2

§136 Lack of scale invariance

Recall the four crucial differences of the hyperbolic plane:

• Very large
• Thin triangles
• Not scale-invariant
• Tidal forces

We have now come to the third of these - the lack of scale invariance. We will
illustrate this in three (equivalent) ways:

∗ There is a natural unit of length
∗ The metric is not isometric to a multiple of itself
∗ Life is different on different scales

Natural unit of length

In the Euclidean plane, there is no natural unit of length. There is no way to
look at the geometry around you and deduce a yardstick of length. That is
because Euclidean geometry operates the same at all scales.

In the hyperbolic plane, we can define a measuring unit directly from the ge-
ometry. For example, we could define a quant to be

• the radius of the largest circle that fits inside an ideal triangle.

We could then use “quants” to measure all objects in H2.

In the units we have been using up til now, we found that this measuring rod
– the quant – has length 0.54930... This, in turn, shows that our previous units
are also naturally defined, purely from the geometry of the space. Namely:

The length unit in the hyperbolic plane is 2/ log(3) times the
radius of the largest radius of a circle that fits in a triangle.
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The metric is not isometric to a multiple of itself

In the Euclidean plane, if you multiply the metric by a constant, the new metric
space is isometric to the old one.

Equivalently, the Euclidean possesses (many) nontrivial similarities. By non-
trivial, we mean with length multiplier not equal to 1.

For the hyperbolic plane, this is no longer true. Fix λ > 0. Define

dλH(P,Q) := λ dH(P,Q), P,Q ∈ B1,

a new metric on B1. Let H2(λ) be the metric space

H2(λ) = (B1, d
λ
H).

Then H2(1) = H2. This is the standard hyperbolic plane. We have

When λ 6= 1, H2(λ) is not isometric to H2

Now, H2(λ) looks a lot like H2. It has angles, distances, exponential growth,
thin triangles, ideal triangles, and non-Euclidean laws of trigonometry.

But we can prove these spaces are all different by invoking a property that is
invariant under isometries. The following statement holds in H2(λ):

In H2(λ), the largest circle that fits inside an ideal triangle has
radius (log(3)/2)λ.

The size of this triangle is different in all these spaces. So they cannot be
isometric to each other.

Three different scales

The hyperbolic plane is very different on different scales. For example, large
triangles are different from small triangles.

What is life like for creatures that are very small, midsize, or very large?

1) L� 1

Creatures whose physical dimensions are very small experience nearly Euclidean
geometry. Angles sums are close to 180, and the rules of Euclidean trigonometry
hold almost exactly.

2) L ∼ 1

Creatures that are midsize – say with size

1

100
< L < 100
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experience a geometry that is recognizably distorted from Euclidean in all the
ways we have mentioned: exponential space, visually small objects, angles sums
less than 180, hyperbolic trigonometry, tidal forces.

3) L� 1

On a very large scale, the hyperbolic plane becomes truly alien.

Angles sums go to zero. In the limit, triangles become infinitely thin, which
enforces a stick-like, tree-like structure, like a spider with infinitely slender,
infinitely branching fingers.

An infinitely thin triangle is a tripod. But every point of hyperbolic space has
an equal claim to be the center. So there are many tripods that attach together.
They form a tree (in the graph-theoretic sense). They are a railway system for
the hyperbolic plane. Here is a picture of an infinite trivalent tree embedded in
hyperbolic space. All edges have the same length and all angles are 120◦.

Figure 136.1: A trivalent tree in H2, W. M. Goldman, S. Lawton, and E. Z. Xia

Exercise 136.1 What is the symmetry group of this trivalent tree?

We would like to understand this picture at an “infinite” scale. A good way to
do this is to bring the largest scales into easy reach by considering the rescaled
space H2(λ) when λ is very small.1 We ask

What is the limit of the metric space as λ→ 0?

To visualize λ getting smaller, imagine the infinite trivalent tree depicted in
the above diagram, but with all the edges much shorter. Then the amount of

1One might think that the way to understand large scales is to make λ very large. But
this would make H2(λ) converge to the Euclidean plane, by expanding small scales to normal
size.
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branching within a given distance becomes much more intense. The branch-
ing represents the exponential spreading of the original hyperbolic space on an
extremely large scale.

The limit of H2(λ) when λ → 0 is a metric space that is a tree (in the graph-
theoretic sense) that branches infinitely often at every point. It is not locally
compact.1

1It is an example of a class of metric spaces known as R-trees or real trees. Not the same
as the data structure. See https:en.wikipedia.org/wiki/Real_tree.
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Chapter 46

Divergence of hyperbolic lines

§137 Ultraparallels and limiting parallels

The following proposition states that ultraparallels have a unique common per-
pendicular, and describes the asymptotic distance between them.

Proposition 137.1 Let L1 and L2 be ultraparallel hyperbolic lines.

a) There exists a unique hyperbolic line M perpendicular to both L1 and L2.

b) The segment S of M that is cut out by L1 and L2 minimizes the distance
between L1 and L2. In fact, it is the unique minimizer among all segments with
endpoints on L1, L2.

c) L1 and L2 move infinitely far apart as they pass to infinity.

Input…

P

P1

2

Figure 137.1: The common perpendicular
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Exercise 137.1 Prove the proposition.

Statements a) and b) contrast sharply with the Euclidean case, where parallel
lines have infinitely many common perpendiculars – all of which are length-
minimizing segments:

Figure 137.2: Infinitely many common perpendiculars

So in the Euclidean plane, if you have a double-barreled shotgun, and you shoot
two bullets out if it, then they remain close to each other forever.

According to statement c), shotguns work totally differently in the hyperbolic
plane. In H2, no matter how close together the barrels, the flight trajectories
will veer apart arbitrarily much as they go to infinity.

So if you fire at a distant elephant, the bullets could easily pass it on the left
and on the right, missing it by 1000 meters on either side.

Figure 137.3: Double-barreled shotgun; divergence of trajectories

The elephant is depicted by a bright red dot between the trajectories (too small
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to see, in the Euclidean sense).

Exercise 137.2 At what rate do the ultraparallels move apart as they go to
infinity?

Limiting-parallel hyperbolic lines

Limiting-parallel hyperbolic lines differ sharply from ultraparallels.

Exercise 137.3 x

a) Show that limiting-parallel hyperbolic lines do not possess a common perpen-
dicular.

b) Show that limiting-parallel hyperbolic lines approach each other exponentially
at infinity (at one end).

§138 Distance sets

So ultraparallels move away rapidly away from each other as they pass to infinity.

What about this: Fix a hyperbolic line, and look at the points at a fixed distance
from the line.

For simplicity, take the line to be our standard line

L0 = R ∩B1.

Figure 138.1: The line L0
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Define

As :=

{
{P ∈ B1 : dH(P,L0) = |s| and P is "above" L0} if s > 0

{P ∈ B1 : dH(P,L0) = |s| and P is "below" L0} if s < 0.

Then A0 = L0, and As is a set of points at distance |s| from L0. The sign of s
tells you whether As is to the left or right of L0 as you move along L0 in the
positive direction. We call As a distance set.

Note that As is not a hyperbolic line when s 6= 0.

A  , s > 0

A  , s < 0

s

s

Figure 138.2: Distance sets As

Action of the Apollonian slide on distance sets

What does the transformation Kt do to each As?

Since Kt is an isometry and takes L0 to L0, Kt must take As to a new set at
distance s from L0. Since Kt doesn’t exchange the left and right sides of L0, it
must take each As to itself:

Kt(As) = As

But that is just what Kt did to the red circles of Figure 82.1, which, as you
recall, are clines that run from −1 to 1.

We conclude:

The distance sets to L0 are just the red arcs in the Figure below,
and they are preserved by isometries that slide along L0.
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Figure 138.3: Kt preserves distance sets (WillowW, Pbroks13, Wikipedia, modified)

More general remark: We can do this construction along any hyperbolic line
L. If p−, p+ are the endpoints of L at infinity, then the distance sets for L
are all the clines in B1 that join p− to p+. There exists a family of hyperbolic
isometries that slide along L, and they preserve the distance sets for L.

IMAGE: Distance sets of any hyperbolic line

§139 Tidal forces

Recall the four crucial differences of the hyperbolic plane:

• Very large
• Thin triangles
• Not scale-invariant
• Tidal forces

We now come to tidal forces. Together with getting lost, tidal forces are the
most conspicuous danger of hyperbolic space.1

The basic message is:

In hyperbolic space, objects in free
motion experience tidal stresses

This is in stark contrast to Euclidean space, where objects moving at constant
velocity cannot be physically distinguished from objects that are standing still.

1Recall Figure 96.1, “1000 Ways to Die in Hyperbolic Space”.
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They are equivalent under a coordinate change x′ = x−vt. This is the principle
of Galilean relativity.

How does an object move in hyperbolic space?

A point particle in free motion moves at constant speed along a hyperbolic line.

Now consider an extended body, such as a space ship, an apple, or a human.

IMAGE: Extended body

We will look at

∗ How the body moves

∗ How the body wishes to move

∗ Tidal force
∗ Relation to Einstein’s theory of gravity

1) How the body moves

Suppose that an apple moves by free motion in H2.

Then the center of gravity of the apple1 moves along a hyperbolic line.

The apple retains its size and shape because of intramolecular forces. So the
apple moves by a family of hyperbolic isometries along a hyperbolic line.

Suppose the hyperbolic line is L0 = R ∩ B1. Then the apple moves by the
Apollonian slide Kt. So it moves as shown in the Figure.

Figure 139.1: How the body moves

In particular:

Each particle of the apple moves along a distance curve As

1The center of gravity of a body can be defined very nicely in hyperbolic space.
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Exercise 139.1 We’ve been sloppy about the parameter t in Kt. It is not the
correct time parameter of a constant-speed particle. Can you define a new pa-
rameter t′, t = t(t′), such that t′ is the true time parameter for a particle moving
along L0 at constant hyperbolic speed v?

2) How the body wishes to move

Now suppose the apple were not bound together, but consisted of separate
particles like bits of gravel. How would they move?

Here’s how:

Each particle of the apple wants to move along a hyperbolic line Ls

But the hyperbolic lines fan out. So if they weren’t bound together, the apple
particles would move away from each other.

Figure 139.2: How the body wants to move

3) Tidal force

How would this feel?

If you were moving along a free path, you would feel your arms being pulled out
to the side. This is the tidal force.

It is not a real force, because it is not caused by physical action, but by the
geometry of inertial curves.

In fact, the real force points in the opposite direction - it is the force that the
molecular bonds of your body exert to prevent your arms from flying apart.
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It is analogous to the centrifugal “force” you feel in Euclidean space when you
spin in circles. But in Euclidean space, if you ride on a train, you feel nothing.
In hyperbolic space, you feel a force in both situations, spinning and going
straight.

The faster you go, the greater the force. This makes it dangerous; you could be
torn apart. Fast trains are not practical.

In fact, consideration of units allow us to deduce that the acceleration you feel
has magnitude

a ∼ v2.

Here v is the speed. The coefficient of v2 is some function f(d) of the distance
d between your fingertips. Necessarily, f(0) = 0.1

Exercise 139.2 Find f(d).

This is really a differential geometry problem.

In spherical geometry, there is also a tidal force, but it squishes you together
rather than pulling you apart.

4) Relation to gravity

As you recall, Einstein’s theory says that space is curved. One of the insights
of the theory is that gravity is not a “real” force, but is just the geometric effect
of having a different notion of “straight line” than in Euclidean space.

The “straight lines” are called geodesics. Objects in free fall – objects orbiting
a planet, or objects accelerating toward a planet – are just following geodesics.

There are tidal forces in Einstein’s theory. They occur when geodesics cannot
retain constant distance, but move apart. This happens when you are quite
near a very massive object such as a neutron star or a black hole. The effect of
these moving-apart geodesics is that the force of gravity feels stronger on your
feet (closer to the massive object) than on your head (farther from the massive
object). If the spaceship ventures too close to the black hole, the occupants will
be destroyed by tidal forces.

So the tidal forces in relativity are quite analogous to the ones in hyperbolic
geometry.

1The formula will also contain a dimensionful constant, namely a characteristic distance,
in case you are in H2(λ) for some λ.
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Chapter 47

The upper half-plane model

§140 The upper half-plane model

The Poincaré upper half-plane model of the hyperbolic plane has domain

H+ = {z ∈ C : Im(z) > 0}.

You can get all the geometry of H+ from B1 via the Cayley transform

j : H+ → B1, j(z) =
z − i
z + i

.

Namely, we get

angles, hyperbolic lines, distance, length element, area element

in H+ by “pulling them back” by j. We get in particular:

1) Hyperbolic angles are the same as Euclidean angles in H+.

Here is the rationale. Hyperbolic angles are equal to Euclidean angles in B1.
The map j : H+ → B1 preserves Euclidean angles. It then follows from the
above definition that j preserves hyperbolic angles.

2) The hyperbolic lines in H+ are defined analogously to the definition in B1.
Namely, they are the curves of the form

C ∩H+

where C is any cline normal to the x-axis, including vertical lines. So the
hyperbolic lines comprise half-circles normal to the x axis as well as vertical
half-lines.
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IMAGE: Hyperbolic lines in the upper half-plane model

It follows from this definition that the hyperbolic lines in H+ are just the inverse
images under j of the hyperbolic lines in B1.

3) Hyperbolic distance in H+ is given by

d′H(z1, z2) = [z1, z2; (z2)∞, (z1)∞] z1, z2 ∈ H+

where (z2)∞, (z1)∞ are the points where the hyperbolic line through z1, z2 hits
infinity.

By the Möbius invariance of the cross-ratio, it follows that

d′(z1, z2) = dH(j(z1), j(z2)) z1, z2 ∈ H+.

That is, j is an isometry from (H+, d
′
H) to (B1, dH).

4) A direct formula for the hyperbolic distance in H+ is

d′H(z1, z2) = arccosh

(
1 +

1

2

|z1 − z2|2

y1y2

)
, z1, z2 ∈ H+,

where
z1 = x1 + iy1, z2 = x2 + iy2.

(This is proven in the next section).

5) It follows that the hyperbolic length element at z in H+ is

dsH =
ds

y

where ds is the Euclidean length element and z = x+ iy. (Again, see the proof
in the next section). This means

length′H(γ) =

∫
γ

dsH

=

∫
γ

ds

y

=

∫ b

a

√(
dx
dt

)2
+
(
dy
dt

)2
y(t)

dt

where γ(t) = (x(t), y(t)), a ≤ t ≤ b is a curve in H+.

6) The area element in H+ is then

dA′H =
dA

y2
=
dx dy

y2
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where dA = dx dy is the Euclidean area element.

7) The circle at infinity is
R̂ = R ∪ {∞}.

8) Here are some ideal triangles in the upper half-plane

Figure 140.1: Ideal triangles (Sarahtheawesome, Redrobsche, Wikipedia)

§141 Proofs

Proof of 4) x

Let

w =
z − i
z + i

,

be the Cayley transformation of z. So

w1 =
z1 − i
z1 + i

, w2 =
z2 − i
z2 + i

.

Then

w1 − w2 =
z1 − i
z1 + i

− z2 − i
z2 + i

=
(z1 − i)(z2 + i)− (z2 − i)(z1 + i)

(z1 + i)(z2 + i)

=
(−iz2 + iz1)− (−iz1 + iz2)

(z1 + i)(z2 + i)

= 2i
z1 − z2

(z1 + i)(z2 + i)
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Now, we want j to be an isometry. So we will have

cosh d′H(z1, z2) = cosh dH(w1, w2)

= 1 + 2
|w1 − w2|2

(1− |w1|2)(1− |w2|2)

= 1 + 2

∣∣∣2i z1−z2
(z1+i)(z2+i)

∣∣∣2(
1−

∣∣∣ z1−iz1+i

∣∣∣2)(1−
∣∣∣ z2−iz2+i

∣∣∣2)
= 1 + 8

|z1 − z2|2

(|z1 + i|2 − |z1 − i|2)(|z2 + i|2 − |z2 − i|2)

= 1 + 8
|z1 − z2|2

((−iz1 + iz̄1)− (iz1 − iz̄1))((−iz2 + iz̄2)− (iz2 − iz̄2))

= 1− 8
|z1 − z2|2

(2z1 − 2z̄1)(2z2 − 2z̄2)

= 1− 8
|z1 − z2|2

(4iy1)(4iy2)

= 1 +
1

2

|z1 − z2|2

y1y2
.

2

Proof of 5) x

Fix z1. Assume z2 is very close to z1, specifically

|z2 − z1| � y1

where z1 = x1 + iy1.

Then we get by Taylor-expanding cosh,

1 +
1

2
dH(z1, z2)2 +O(dH(z1, z2)4) = 1 +

1

2

|z1 − z2|2

y21
(1 + o(1))

as z2 → z1. So

dH(z1, z2)2(1 + o(1)) =
|z1 − z2|2

y21
(1 + o(1)).

So
dH(z1, z2) =

|z1 − z2|
y1

(1 + o(1))

for z2 very close to z1. So on the infinitesimal level, we get at the point z1

dsH =
ds

y1

where dsH is the hyperbolic length element and ds is the Euclidean length
element. Renaming z1 as z, we have the result.
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2
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Chapter 48

The area of a triangle

§142 The area of a triangle

α

β γ

Figure 142.1: Angles of a triangle

Let T be a hyperbolic triangle. Recall that the quantity

π − (α+ β + γ) > 0

is called the angle defect.

Theorem 142.1 (Area Formula) The area of a hyperbolic triangle is equal
to its angle defect1

areaH(T ) = π − (α+ β + γ)

1It even works for triangles with some or all of the vertices at infinity; the angle is con-
sidered to be zero there.
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So the angles determine the area.

Our proof will follow Weeks, The Shape of Space, Chap. 10.

There is also an angle formula in the sphere, which says the opposite, in a way.1
It states

areaS(T ) = (α+ β + γ)− π (142.1)

for triangles in the unit sphere S2. The quantity on the right-hand side is the
angle excess, which is positive for triangles in the sphere.

IMAGE: A 90-90-90 triangle in S2

These two results are special cases of a general theorem known as the Guass-
Bonnet formula, which allows variable curvature, any boundary curve, and non-
trivial topology. A beautiful exposition of the constant curvature case of the
Gauss-Bonnet formula is given in Weeks, Chapter 12.

Here is an application of Theorem 142.1.

Exercise 142.1 x

a) What is the area of the hyperbolic triangle that occurs in the Zürich tiling?

b) What is the area of a regular hyperbolic pentagon with five 90 degree angles?

Figure 142.2: “Zürich” tiling (Rocchini, Wikipedia); regular pentagon with 90◦ angles
(Lixin Liu)

§143 The area of an ideal triangle

We will prove the Area Formula for three kinds of triangles in succession:2

• Ideal triangles
• Triangles with one finite vertex
1See Weeks, Chap. 9.
2The case of a triangle with two finite vertices will be easy to see by a variant of the

method for a triangle with three finite vertices.
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• Finite triangles

In this section, we do the first case. So consider an ideal triangle.

IMAGE: An ideal triangle

One might think that an ideal triangle has infinite area. Surprisingly, the area
is finite. We have

Proposition 143.1 The area of an ideal triangle is π.

This is a further manifestation of “Large triangles are thin”.

It actually makes sense that the area is finite. Note that an ideal triangle
consists of three noncompact “wings” plus a bounded central region. By Exercise
137.3, the limiting-parallel lines that make up each “wing” approach each other
exponentially fast at infinity. So the area of each “wing” is finite. So the total
area is finite.

The reader will observe that the angle excess of an ideal triangle is π. So the
Proposition is the Area Formula for the case of an ideal triangle.

Proof x

The integral looks pretty hard in the Poincaré model. So let’s do it in the upper
half-plane model. Recall that in the upper half-plane model, the area element
is

dAH2 =
dA

y2
=
dx dy

y2
.

Now all ideal triangles have the same area, so we should look at one where it’s
easy to integrate. The simplest ideal triangle in the upper half-plane is the
triangle T has vertices

−1, 1,∞
and sides

{x = −1} ∩H+, {x = 1} ∩H+, {x2 + y2 = 1} ∩H+.

IMAGE: A standard ideal triangle in the upper half-plane

The area is computed by integrating the area element over the region defined
by

−1 < x < 1, y >
√

1− x2.
We get

areaH(T ) =

∫ 1

−1

∫ ∞
√
1−x2

1

y2
dy dx

= 2

∫ 1

0

[
−1

y

]∞
√
1−x2

dx

= 2

∫ 1

0

dx√
1− x2

.
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Do the substitution x = sinu, dx = cosu du and get

area(T ) = 2

∫ π/2

0

cosu du

cosu

= 2

∫ π/2

0

du

= π.

2

§144 The area of a triangle with one finite vertex

Let T be a triangle with one finite vertex P and two vertices at infinity.

IMAGE: A triangle with one finite vertex

We might call T “semi-ideal”. Let α be the angle at the point P . It is easy to
verify that any two semi-ideal triangles with the same α are isometric.

What is the area of T? We know that it is less than π because T fits within an
ideal triangle.

Proposition 144.1 The area of a semi-ideal triangle is

areaH(T ) = π − α.

The reader will observe that the angle excess of a semi-ideal triangle is π − α.
So the Proposition is the Area Formula for the case of a semi-ideal triangle.

Proof x

1. Let T (α) be a semi-ideal triangle with angle α, 0 ≤ α ≤ π.
So T (0) is an ideal triangle, and T (π) is an infinitely thin triangle that lies along
a hyperbolic line.

Write
f(α) := π − areaH(T (α)).

Then for an ideal triangle,

f(0) = π − π = 0

and for an infinitely thin triangle,

f(π) = π − 0 = π.

To complete the proof, we will show

f(α) = α, 0 ≤ α ≤ π.
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2. Claim: f(α) is a continuous function of α, 0 ≤ α ≤ π.
This can be proven as follows. Let the T (α) be realized as subdomains of an
ideal triangle T (0), such that

1) The doubly infinite side of T (α) coincides with a side of T (0) for each α,

2) The triangles T (α) are a nested decreasing family as α increases from 0 to π.

Then f(α) can be expressed as an integral over T (α). Without evaluating the
integral, it is possible to use the dominated convergence theorem to prove that

areaH(T (β))→ areaH(T (α)) as β → α

for each α in [0, π]. The details are left to the reader.

3. Now fix α, β > 0 with
α+ β < π.

Put T (α) adjacent to T (β), such that the finite vertices coincide, and the two
triangles share one half-infinite side.

IMAGE: Adjacent triangles

This figure can be re-cut as T (α+ β) adjacent to T (0) (an ideal triangle).

IMAGE: A different decomposition

From this we deduce

areaH(T (α)) + areaH(T (β)) = areaH(T (α+ β)) + areaH(T (0)).

Subtracting from π + π, we get

f(α) + f(β) = f(α+ β) + f(0),

that is,

f(α) + f(β) = f(α+ β), 0 < α, β, α+ β < π. (144.1)

4. So f is additive and continuous on [0, π]. It follows that f is linear. That is,

f(α) = α, 0 ≤ α ≤ π. (144.2)

Here is the proof. Equation (144.1) yields

f(π/2) + f(π/2) = f(π) so f(π/2) = π/2

f(π/4) + f(π/4) = f(π/2) so f(π/4) = π/4

and by induction

f(π/2k) + f(π/2k) = f(π/2k−1) so f(π/2k) = π/2k, k ≥ 0.
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Then using (144.1) again, we get

f
(m

2k
π
)

= f
( π

2k

)
+ · · ·+ f

( π
2k

)
︸ ︷︷ ︸

m

=
π

2k
+ · · ·+ π

2k︸ ︷︷ ︸
m

=
m

2k
π

for k ≥ 0, m = 0, . . . , 2k. But the binary rationals m/2k are dense in [0, π]. So
by continuity, (144.2) holds for all 0 ≤ α ≤ π.

2

§145 The area of a finite triangle

We will prove the Area Formula (Theorem 142.1). We’ll follow the proof in
Weeks’ book.1

Proof of Theorem 142.1 Let T be a finite triangle with vertices A,B,C and
interior angles

α, β, γ > 0

and area
areaH(T ).

α

β γ

A

B

C

Figure 145.1: Angles of a triangle

1There is also a nice presentation at Tevian Dray, https:books.physics.oregonstate.
edu/MNEG/hlunes.html.
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We will prove the theorem by comparing T to an ideal triangle.

Continue the side AB in one direction to a point at infinity called C ′.

Continue the side BC in one direction to a point at infinity called A′.

Continue the side CA in one direction to a point at infinity called B′.

Then the triangle T ′ = A′B′C ′ is an ideal triangle containing T . It looks like
this.

IMAGE: An ideal triangle equals T plus 3 “shims”

The ideal triangle T ′ decomposes into four triangles, namely T plus three semi-
ideal triangles, namely

AB′C ′, BC ′A′, CA′B′

The semi-ideal triangles are called shims in Weeks. They have angles

α′ = π − α, β′ = π − β, γ′ = π − γ.

Now we can sum the four areas to get

areaH(T ′) = areaH(T ) + areaH(AB′C ′) + areaH(BC ′A′) + areaH(CA′B′).

On the other hand, by Propositions 143.1 and 144.1 we have

areaH(T ′) = π

areaH(AB′C ′) = π − α′ = α

areaH(BC ′A′) = π − β′ = β

areaH(CA′B′) = π − γ′ = γ.

Substitute these to obtain

π = areaH(T ) + α+ β + γ

so
areaH(T ) = π − (α+ β + γ).

2
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Visualization

§146 Not knot

I recommend the Not Knot video, produced by the Geometry Center in the 90’s.

It gives a view of what happens in hyperbolic 3-space, and a beautiful con-
struction of certain compact hyperbolic 3-manifolds based on the Borromean
rings.

• https:www.youtube.com/watch?v=QcLfb0PhfO0

https:www.youtube.com/watch?v=QcLfb0PhfO0
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§147 Books and courses

Script 2 years ago:

• T. Ilmanen, Geometrie 2020, https:metaphor.ethz.ch/x/2020/hs/401-1511-00L/
literatur/script.pdf.
The script has many examples of groups acting on R3. It has a lot of
pictures and visuals.

Additional books and courses (besides the ones in §2):

• D. Burger, Sphereland: A Fantasy About Curved Spaces and an Expanding
Universe, 1957.

• D. Hilbert, S. Cohn-Vossen, Anschauliche Geometrie, Springer. A classic.
• J. M. Lee, Introduction to Riemannian Manifolds, 2nd ed., Springer, 2018.
• T. Needham, Visual Complex Analysis, Oxford University Press, 2000.
• M. Reed, B. Simon, Methods of Modern Mathematical Physics I: Func-
tional analysis, Elsevier, 1980.

• W. Aitken, Math 410: Modern Geometry, https://public.csusm.edu/
aitken_html/m410; a nicely written introduction to the axiomatic ap-
proach.

§148 Articles

Articles:

• J. Weeks, Non-Euclidean billiards in VR, https:archive.bridgesmathart.
org/2020/bridges2020-1.pdf.

• S. J. Trettel, Life in Hyperbolic Space: The dangers of life in a negatively
curved space, https:stevejtrettel.site/note/old/life-in-hyperbolic/

• C. I. Delman and G. Galperin, A tale of three circles, Mathematics Mag-
azine, vol. 76, 2003, pp. 15-32.

Wikipedia:

• Stereographic projection
• Uniform tilings in hyperbolic plane

§149 Software, visualization, and activities

Jeff Weeks geometry apps:

• Flying in curved space (iOS, macOS, Windows),
https:www.geometrygames.org/CurvedSpaces
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• Kaleidotile (iOS, macOS, Windows),
https:www.geometrygames.org/KaleidoTile

• Crystal flight (iOS, macOS),
https:www.geometrygames.org/CrystalFlight

Malin Christersson:

• https:www.malinc.se/noneuclidean/en/poincaretiling.php

Stephen J. Trettel:

• https:stevejtrettel.site/
• S. J. Trettel, Math encounters: Life in curved space from magnifying
glasses to general relativity,
https:www.youtube.com/watch?v=HgAGh4DmCRM

Geogebra:

• https:www.geogebra.org/m/tHvDKWdC

Hyperrogue:

• https:roguetemple.com/z/hyper

ZenoRogue:

• Youtube channel,
https:www.youtube.com/channel/UCfCtbgiDxwFtlqrbEralvTw

• Branching random walk in the hyperbolic plane,
https:www.youtube.com/watch?v=sXNI_i6QZZY

D. Arnold and J. Rogness:

• Möbius transformations revealed,
https:www.youtube.com/watch?v=0z1fIsUNhO4.

Not Knot video:

• Geometry Center, Not Knot,
https:www.youtube.com/watch?v=QcLfb0PhfO0

X. Lee:

• Wallpaper groups,
https:xahlee.info/Wallpaper_dir/c5_17WallpaperGroups.html

Table of Contents 348

https:www.geometrygames.org/KaleidoTile
https:www.geometrygames.org/CrystalFlight
https:www.malinc.se/noneuclidean/en/poincaretiling.php
https:stevejtrettel.site/
https:www.youtube.com/watch?v=HgAGh4DmCRM
https:www.geogebra.org/m/tHvDKWdC
https:roguetemple.com/z/hyper
https:www.youtube.com/channel/UCfCtbgiDxwFtlqrbEralvTw 
https:www.youtube.com/watch?v=sXNI_i6QZZY
https:www.youtube.com/watch?v=0z1fIsUNhO4
https:www.youtube.com/watch?v=QcLfb0PhfO0
https:xahlee.info/Wallpaper_dir/c5_17WallpaperGroups.html


LIST OF FIGURES PART IV

List of Figures

4.1 The 2-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 A geodesic arc . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Order-4 bisected pentagonal tiling of the hyperbolic plane (Roc-

chini, Wikipedia) . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Unique parallel through a given point . . . . . . . . . . . . . . 16
4.6 Two intersection points . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Many parallels through a given point (via A. Zampa’s Geoge-

bra applet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.8 A tessellated hyperbolic space (J. Weeks’ Curved Spaces app,

https:www.geometrygames.org/CurvedSpaces) . . . . . . . . 18

7.1 Orientation-preserving and orientation-reversing in R3. . . . . 24

10.1 Stereographic projection (David Lyons, math.libretexts.org) . 32
11.1 Stereographic projection (Strebe, Wikipedia, CC SA 3.0 license) 34
11.2 Stereographic projection (Lars H. Rohwedder , Wikipedia, CC

SA 3.0 Unported license) . . . . . . . . . . . . . . . . . . . . . 35

12.1 A hyperbolic Möbius transformation (WillowW, Pbroks13, mod-
ified from Wikipedia, CC BY-SA 3.0) . . . . . . . . . . . . . . 37

12.2 An elliptic Möbius transformation (WillowW, Pbroks13, Wikipedia,
modified, CC BY-SA 3.0) . . . . . . . . . . . . . . . . . . . . . 37

27.1 Transferring f to S2. . . . . . . . . . . . . . . . . . . . . . . . 67
28.1 Four types of transformation (Needham, Visual Complex Anal-

ysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
28.2 An elliptic transformation (Needham, Visual Complex Analysis) 69
28.3 A hyperbolic transformation (Needham, Visual Complex Anal-

ysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
28.4 A loxodromic transformation (Needham, Visual Complex Anal-

ysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
28.5 A translation of C . . . . . . . . . . . . . . . . . . . . . . . . . 71
28.6 A parabolic transformation (Needham, Visual Complex Anal-

ysis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
29.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

349 Table of Contents

https:www.geometrygames.org/CurvedSpaces


PART IV LIST OF FIGURES

32.1 Cayley transformation (KSmrq, Wikipedia, modified), CC BY-
SA 3.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

34.1 Octants of S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
34.2 Cayley-like transformation (WillowW, Pbroks13, modified from

Wikipedia, modified, CC BY-SA 3.0) . . . . . . . . . . . . . . 82
34.3 Four regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
34.4 The real Cayley transformation (WillowW, Pbroks13, modi-

fied from Wikipedia, modified, CC BY-SA 3.0) . . . . . . . . . 84
34.5 Four regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
34.6 Fixed points of the Cayley transformation . . . . . . . . . . . 86
35.1 Octants in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
35.2 Octants on S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
35.3 Octahedron (Cyp, Wikipedia) . . . . . . . . . . . . . . . . . . 89
35.4 Octahedron inscribed in a cube and vice-versa. (Knörrer/Brieskorn) 89

37.1 Circles go to clines (Delman-Galperin, 2003) . . . . . . . . . . 93
38.1 Double angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
38.2 The angle is independent of Y . . . . . . . . . . . . . . . . . . . 94
39.1 Stereographic projection (Hilbert-Cohn-Vossen) . . . . . . . . 96
39.2 The tangent planes at P and N (Hilbert-Cohn-Vossen) . . . . 96
39.3 Objects in the plane w . . . . . . . . . . . . . . . . . . . . . . 97
39.4 Equal angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
39.5 Equal angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
40.1 A point Z not on p . . . . . . . . . . . . . . . . . . . . . . . . 98
40.2 The cone K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
40.3 The cone K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
40.4 Oblique construction of a cone . . . . . . . . . . . . . . . . . . 100
40.5 Finding the axis and an orthogonal generator (in green) . . . . 101
41.1 Circles go to clines (Delman-Galperin, 2003) . . . . . . . . . . 102
41.2 T is the union of the lines through N in T . . . . . . . . . . . 102
41.3 A circle through N , and the plane T . . . . . . . . . . . . . . 103
41.4 A circle not through N , and the cone K . . . . . . . . . . . . 104
41.5 The plane w . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
41.6 The circle C and its image σ(C) . . . . . . . . . . . . . . . . . 105
41.7 Location of the plane v . . . . . . . . . . . . . . . . . . . . . . 110

42.1 Inversion in S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
43.1 Composing stereographic projections . . . . . . . . . . . . . . 113
44.1 Composing the other way . . . . . . . . . . . . . . . . . . . . . 114

51.1 Two curves and their images . . . . . . . . . . . . . . . . . . . 125
51.2 The angle between two regular curves . . . . . . . . . . . . . . 126

56.1 Orthogonal decomposition . . . . . . . . . . . . . . . . . . . . 133
56.2 Orthogonal decomposition . . . . . . . . . . . . . . . . . . . . 135

Table of Contents 350



LIST OF FIGURES PART IV

59.1 A translation of C . . . . . . . . . . . . . . . . . . . . . . . . . 139
59.2 Action of T̃b on S2 (Needham, Visual Complex Analysis) . . . 139
59.3 Action of Ut on C . . . . . . . . . . . . . . . . . . . . . . . . . 141
59.4 Action of Ut on C . . . . . . . . . . . . . . . . . . . . . . . . . 143

61.1 Circles go to clines (Delman-Galperin, 2003) . . . . . . . . . . 147

63.1 Covering S2 by two charts . . . . . . . . . . . . . . . . . . . . 154

67.1 Two clines that are orthogonal . . . . . . . . . . . . . . . . . . 160
67.2 Finding X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
67.3 Finding X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
68.1 A cline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
68.2 The center of the circle and its antipode . . . . . . . . . . . . 163
68.3 Graticule (Tom MacWright, modified, https:observablehq.

com/@tmcw/graticule-globe-generator) . . . . . . . . . . . 164
68.4 Circles of latitude . . . . . . . . . . . . . . . . . . . . . . . . . 165

82.1 A hyperbolic transformation (WillowW, Pbroks13, modified
from Wikipedia, CC BY-SA 3.0) . . . . . . . . . . . . . . . . . 189

82.2 The motion ofKt from−1 to 1 (WillowW, Pbroks13, Wikipedia,
modified, CC BY-SA 3.0) . . . . . . . . . . . . . . . . . . . . . 191

82.3 Cayley transformation (KSmrq, Wikipedia, modified), CC BY-
SA 3.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

83.1 The iterates 0, Kt(0), Kt(Kt(0)), etc. . . . . . . . . . . . . . . 195
83.2 The Apollonian circles again (WillowW, Pbroks13, Wikipedia,

CC BY-SA 3.0) . . . . . . . . . . . . . . . . . . . . . . . . . . 196
84.1 The segment Lb . . . . . . . . . . . . . . . . . . . . . . . . . . 197
84.2 The motion ofKt from b− to b+ (WillowW, Pbroks13, Wikipedia,

modified, CC BY-SA 3.0) . . . . . . . . . . . . . . . . . . . . . 198

86.1 Triply transitive . . . . . . . . . . . . . . . . . . . . . . . . . . 201
86.2 The affine group is doubly transitive on C . . . . . . . . . . . 202
90.1 Intermediate groups . . . . . . . . . . . . . . . . . . . . . . . . 208

94.1 Four points on a cline . . . . . . . . . . . . . . . . . . . . . . . 214
94.2 Taking z1, z2, z3, z4 to z, 1, 0,∞ . . . . . . . . . . . . . . . . . 215

96.1 Dangers of hyperbolic space . . . . . . . . . . . . . . . . . . . 221

99.1 Hyperbolic lines (via A. Zampa’s Geogebra applet) . . . . . . 224
100.1 No parallel lines in S2 . . . . . . . . . . . . . . . . . . . . . . . 226
100.2 Many parallels through a given point (via A. Zampa’s Geoge-

bra applet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
100.3 Limiting parallel (via A. Zampa’s Geogebra applet) . . . . . . 227
100.4 Ultraparallel (via A. Zampa’s Geogebra applet) . . . . . . . . 227
101.1 Geogebra (screenshot) . . . . . . . . . . . . . . . . . . . . . . . 228

351 Table of Contents

https:observablehq.com/@tmcw/graticule-globe-generator
https:observablehq.com/@tmcw/graticule-globe-generator


PART IV LIST OF FIGURES

102.1 Two hyperbolic lines tangent at 0 (impossible) . . . . . . . . . 231

104.1 Ordering of the points . . . . . . . . . . . . . . . . . . . . . . . 234
106.1 Hyperbolic distance as a function of t (via https:www.desmos.

com) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
106.2 Iterated points . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

108.1 Moving P , Q to a standard position . . . . . . . . . . . . . . . 243

110.1 Three possible positions of the triangle . . . . . . . . . . . . . 248
110.2 Three possible positions of R . . . . . . . . . . . . . . . . . . . 250

113.1 Stereographic projection (Strebe, Wikipedia, CC BY-SA 3.0
license) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

115.1 Taking w to v . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
115.2 Finding the ratio |NP |/|NQ|. . . . . . . . . . . . . . . . . . . 259
115.3 Factors of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

118.1 An intrinsic disk of radius r . . . . . . . . . . . . . . . . . . . 266
118.2 Circumference of a circle in H2, R2 and S2 (Mathematica) . . 267
118.3 Missing area in spherical disk (Weeks . . . . . . . . . . . . . . 268
118.4 More area in H2 disk (R. Munroe, xkcd, pie_charts, CC BY-

NC 2.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
118.5 Area of a circle in H2, R2 and S2 (Mathematica) . . . . . . . . 269

119.1 Order-4 bisected pentagonal tiling of the hyperbolic plane (Roc-
chini, Wikipedia) . . . . . . . . . . . . . . . . . . . . . . . . . 270

119.2 See the pentagons? (Rocchini, Wikipedia, modified) . . . . . . 271
119.3 Hyperbolic (5, 4) tiling (via Kaleidotile) . . . . . . . . . . . . . 271
119.4 Another view (N. Breuckmann and B. Terhal, Constructions

and Noise Threshold of Hyperbolic Surface Codes) . . . . . . . 272
119.5 Planar (4, 4) tiling (www.freepik.com) . . . . . . . . . . . . . . 272
119.6 Spherical (3, 4) tiling (Tomruen, Wikipedia, public domain) . 273
119.7 Kaleidotile screenshot . . . . . . . . . . . . . . . . . . . . . . . 274
119.8 M. Christersson website . . . . . . . . . . . . . . . . . . . . . . 274
119.9 Circle Limit (M. C. Escher) . . . . . . . . . . . . . . . . . . . 275
120.1 Pentagon with five right angles (Lixin Liu) . . . . . . . . . . . 275
120.2 Hyperbolic billiards VR system (J. Weeks, Non-Euclidean Bil-

liards in VR, https:archive.bridgesmathart.org/2020/bridges2020-1.
pdf) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

121.1 (3,8) tiling (Parcly Taxel, Wikipedia,public domain) . . . . . . 277
121.2 Another view of the (3,8) tiling (Anton Sherwood via User:Tamfang/programs,

Wikipedia, public domain) . . . . . . . . . . . . . . . . . . . . 278
121.3 Hyperbolic (8, 3) tiling (via Kaleidotile) . . . . . . . . . . . . . 279
121.4 Another tiling with the same symmetry (via Kaleidotile) . . . 280

123.1 A (3, 8) tiling (Parcly Taxel, Wikipedia, public domain) . . . . 282

Table of Contents 352

https:www.desmos.com
https:www.desmos.com
https:archive.bridgesmathart.org/2020/bridges2020-1.pdf
https:archive.bridgesmathart.org/2020/bridges2020-1.pdf


LIST OF FIGURES PART IV

123.2 A path of length 3 (Parcly Taxel, Wikipedia, public domain,
modified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

123.3 The figure D1 (Parcly Taxel, Wikipedia, public domain, mod-
ified) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

123.4 The figures D1 and D2 (Parcly Taxel, Wikipedia, public do-
main, modified) . . . . . . . . . . . . . . . . . . . . . . . . . . 284

123.5 A corner sprouts 4 new edges (Parcly Taxel, Wikipedia, public
domain, modified) . . . . . . . . . . . . . . . . . . . . . . . . . 285

123.6 (Parcly Taxel, Wikipedia, public domain, modified) . . . . . . 285
125.1 Hyperrogue (screenshot) . . . . . . . . . . . . . . . . . . . . . 291
125.2 Square lattice (Boa Python, Wikipedia, created with Upload-

Wizard, public domain) . . . . . . . . . . . . . . . . . . . . . . 292
125.3 A (3, 8) tiling (Parcly Taxel, Wikipedia, public domain) . . . . 292
126.1 Arc A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
126.2 Peripheral length . . . . . . . . . . . . . . . . . . . . . . . . . 295

127.1 Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
128.1 Some ideal triangles (Gandalf61, Redrobsche, Wikipedia, CC

by SA 3.0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
129.1 Tripod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
129.2 A generalized tripod, with arbitrary angles . . . . . . . . . . . 302

130.1 Right triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
131.1 Labeled triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 305
133.1 Two rays at a right angle . . . . . . . . . . . . . . . . . . . . . 308
133.2 Triangle PQR . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
133.3 Peripheral arc from Q to R . . . . . . . . . . . . . . . . . . . . 309
133.4 Study these quantities as d→∞ . . . . . . . . . . . . . . . . . 309
133.5 Distance x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
133.6 Distance x∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
133.7 Quantities p, c, x . . . . . . . . . . . . . . . . . . . . . . . . . 314

134.1 Inscribed circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
134.2 Inscribed circle . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
135.1 Tripod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
135.2 A′ is the farthest point on T from Y . . . . . . . . . . . . . . 319
135.3 Tripod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
136.1 A trivalent tree in H2, W. M. Goldman, S. Lawton, and E.

Z. Xia, The mapping class group action on SU(3)-character
varieties, Ergod. Th. & Dynam. Sys., 2020 . . . . . . . . . . . 323

137.1 The common perpendicular . . . . . . . . . . . . . . . . . . . . 325
137.2 Infinitely many common perpendiculars . . . . . . . . . . . . . 326
137.3 Double-barreled shotgun; divergence of trajectories . . . . . . 326
138.1 The line L0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
138.2 Distance sets As . . . . . . . . . . . . . . . . . . . . . . . . . . 328

353 Table of Contents



PART IV LIST OF FIGURES

138.3 Kt preserves distance sets (WillowW, Pbroks13, Wikipedia,
modified, CC BY-SA 3.0) . . . . . . . . . . . . . . . . . . . . . 329

139.1 How the body moves . . . . . . . . . . . . . . . . . . . . . . . 330
139.2 How the body wants to move . . . . . . . . . . . . . . . . . . . 331

140.1 Ideal triangles (Sarahtheawesome, Redrobsche, Wikipedia, pub-
lic domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

142.1 Angles of a triangle . . . . . . . . . . . . . . . . . . . . . . . . 338
142.2 “Zürich” tiling (Rocchini, Wikipedia); regular pentagon with

90◦ angles (Lixin Liu) . . . . . . . . . . . . . . . . . . . . . . . 339
145.1 Angles of a triangle . . . . . . . . . . . . . . . . . . . . . . . . 343

Table of Contents 354


	I Beginning
	Preliminaries
	Metadata
	Main References

	Introduction
	What is geometry?
	Three spaces
	Methodology


	II Möbius transformations
	What are Möbius transformations?
	What are Möbius transformations?

	Some background
	Orientation properties
	Similarities and isometries

	Stereographic projection
	The extended complex plane
	The Riemann sphere and stereographic projection
	Stereographic projection from the south pole

	Möbius transformations
	Möbius transformations
	Clarifying the definition
	Three involutions

	The group of Möbius transformations
	Transformation groups
	Möb+ is a group
	Möbius transformations are invertible
	Composition of orientation-preserving Möbius transformations
	Möb is a group
	Transitivity

	Relation to matrix groups
	Our main groups
	Projective linear groups
	Some visuals
	Möb+ and PSL2(C) 

	Generators of Möb+ and of Möb
	Nomenclature
	Generators of Möb+ and Möb

	Operations on S2
	Transferring operations from  to S2
	Types of Möbius transformation
	Elliptic
	Hyperbolic
	Loxodromic
	Parabolic
	Orientation-reversing

	Classification of orientation-preserving Möbius transformations

	The Cayley transformation
	The upper half-plane and the unit disk
	Restricted Möbius groups
	The Cayley transformation
	Isomorphism between Möb(H+) and Möb(B1)

	The octahedral group
	Cayley-like transformations acting on S2
	The octahedral group

	Clines
	Clines

	Clines correspond to circles
	Clines correspond to circles under stereographic projection
	Double angle theorem
	Equal angle lemma
	Cones in R3
	Proof of the Theorem

	Inversion in the unit circle
	Inversion in the unit circle
	Composing north and south stereographic projection
	Inversion in the unit circle yields a reflection of S2

	Möbius transformations preserve clines
	Inversion in the unit circle takes clines to clines
	Möbius transformations preserve clines

	Transitivity on points and clines
	Transitivity on H+ and on B1
	Transitivity on clines
	Transitivity on points and clines

	Inversion, again
	Inversion in any cline

	Conformal maps
	Definition of conformal maps
	Easy lemma
	Analytic criterion
	Small sphere criterion
	Composition and inverse rules

	Conformal and holomorphic
	Angle-preserving linear maps of R2
	Holomorphic and antiholomorphic maps

	Möbius transformations are conformal on C minus pole
	Möbius transformations are conformal on C minus pole
	Visualizing the parabolic knot

	Stereographic projection is conformal
	Conformal maps with domain S2
	Stereographic projection is conformal

	Möbius transformations are conformal on S2
	Groups of conformal maps
	Möbius transformations are conformal on S2
	First proof - by generators
	Second proof - by charts
	What is Möbius geometry?

	Inversions, continued
	Orthogonal clines
	The reticule view of inversions

	Conformal transformations of S2
	Plan
	Conformal transformations of C are Möbius
	Conformal transformations of S2 are Möbius
	Summary of the group isomorphisms for C and S2

	Conformal transformations of B1 and H+
	Plan
	Conformal transformations of B1
	Conformal transformations of H+

	Algebraic form of elements of Möb+(H+)
	Möb+(H+) is PSL2(R)

	Algebraic form of elements of Möb(B1)
	Algebraic form of elements of Möb(B1)
	Explicit form of the isomorphism Möb+(H+)Möb+(B1)
	First proof of the Theorem
	Second proof of the Theorem
	Summary of the group isomorphisms for H+ and B1

	Some explicit transformations of B1
	The Apollonian slide
	Some exercises
	An Apollonian slide in any direction
	Factorization and generators

	Triple transitivity
	Triple transitivity of Möb+ on 
	Double triple transitivity of Möb on 
	Triple transitivity of Möb(B1) on S1
	Half triple transitivity of Möb+(B1) on S1
	Some exercises

	The cross-ratio
	The cross-ratio and its symmetries
	The cross-ratio is preserved under Möb+
	Let's extend the cross ratio
	When the cross-ratio is real
	Designing a Möbius transformation


	III Hyperbolic geometry
	Introduction
	Hyperbolic geometry
	Groups and geometry
	The objects of geometry

	Hyperbolic lines
	Hyperbolic lines
	Parallel lines and the parallel postulate
	Geogebra

	Specifying hyperbolic lines
	Specifying hyperbolic lines
	Action of the Möbius group on hyperbolic lines

	The hyperbolic metric
	Distance in the hyperbolic plane
	Invariance of hyperbolic distance
	Some concrete distances

	The arccosh formula for distance
	The arccosh formula for distance
	Transitivity on point pairs

	The triangle inequality
	Dropping a perpendicular
	The triangle inequality

	The infinitesimal metric
	The local distance-stretching factor
	Lengths of curves

	Comparison of spherical and hyperbolic metrics
	The spherical metric on R2
	Spherical distance on R2
	Spherical arclength on R2
	Comparing the hyperbolic and spherical metrics

	Circumference and area of a hyperbolic disk
	Circumference and area of a hyperbolic disk
	Comparison of spherical, flat, and hyperbolic disks

	Some tilings
	A pentagonal tiling
	A regular pentagon with five right angles
	A tiling of H2 by triangles

	Large size of the hyperbolic plane
	Four crucial differences
	Exponential growth from combinatorics
	Proof
	Too much space
	Objects look exponentially small

	Hyperbolic triangles, especially large ones
	Angle defect
	Ideal triangles
	Triangles are thin

	Hyperbolic trigonometry
	Hyperbolic version of Pythagoras' Theorem
	Hyperbolic trigonometry formulas
	Euclidean limits
	The shortest path is mostly radial

	Lack of scale invariance
	Inscribed circle
	Thin triangles again
	Lack of scale invariance

	Divergence of hyperbolic lines
	Ultraparallels and limiting parallels
	Distance sets
	Tidal forces

	The upper half-plane model
	The upper half-plane model
	Proofs

	The area of a triangle
	The area of a triangle
	The area of an ideal triangle
	The area of a triangle with one finite vertex
	The area of a finite triangle

	Visualization
	Not knot


	IV Bibliography
	Books and courses
	Articles
	Software, visualization, and activities

	List of figures


