§27 Triple transitivity of Möb ${ }_{+}$on $\widehat{\mathbb{C}}$

The action of the Möbius group is not just transitive, but very transitive.

Theorem 27.1

1) The action of Möb $_{+}$on $\hat{\mathbb{C}}$ is triply transitive, meaning if

$$
z_{1}, z_{2}, z_{3} \in \hat{\mathbb{C}}
$$

is a triple of distinct points, and

$$
w_{1}, w_{2}, w_{3} \in \hat{\mathbb{C}}
$$

is another one, then there is a transformation $f \in \mathrm{Möb}_{+}$with

$$
\begin{equation*}
f\left(z_{1}\right)=w_{1}, \quad f\left(z_{2}\right)=w_{2}, \quad f\left(z_{3}\right)=w_{3} . \tag{27.1}
\end{equation*}
$$

2) Subject to these conditions, f is unique.

Figure 27.1: Triply transitive

Proof

1. The points z_{1}, z_{2}, z_{2} and w_{1}, w_{2}, w_{3} are given. We must find a unique f in Möb ${ }_{+}$that satisfies (27.1.
Let us first assume

$$
z_{3}=w_{3}=\infty .
$$

Then f must satisfy

$$
f(\infty)=\infty .
$$

So f is an affine transformation, and will have the form

$$
f(z)=a z+b .
$$

Since $z_{1} \neq z_{2}$ and $w_{1} \neq w_{2}$, it is geometrically clear that there is an orientationpreserving similarity transformation such that

$$
\begin{equation*}
f\left(z_{1}\right)=w_{1}, \quad f\left(z_{2}\right)=w_{2} . \tag{27.2}
\end{equation*}
$$

Just use a for an appropriate scaling and rotation, and b for an appropriate translation.

Figure 27.2: The affine group is doubly transitive on \mathbb{C}

Algebraically, we get

$$
a z_{1}+b=w_{1}, \quad a z_{2}+b=w_{2}
$$

Because $z_{1} \neq z_{2}$, these are two independent linear equations for two unknowns (namely a and b), so it has a unique solution, namely

$$
a=\frac{w_{1}-w_{2}}{z_{1}-z_{2}}, \quad b=\frac{z_{1} w_{2}-z_{2} w_{1}}{z_{1}-z_{2}} .
$$

So f exists. These values are forced, so f is unique. We have proven the Theorem under the assumption $z_{3}=w_{3}=\infty$.

2 . Now let z_{1}, z_{2}, z_{2} and w_{1}, w_{2}, w_{3} be fully general. We wish to show that there is a unique f in Möb ${ }_{+}$such that (27.1) is satisfied.
We know from Theorem 16.1 that Möb + acts transitively on $\hat{\mathbb{C}}$. So we can select

$$
g, h \in \mathrm{Möb}_{+}
$$

such that

$$
g(\infty)=z_{3}, \quad h\left(w_{3}\right)=\infty .
$$

Set

$$
k=h \circ f \circ g .
$$

Then equation 27.1 is equivalent to

$$
\begin{equation*}
k\left(z_{1}^{\prime}\right)=w_{1}^{\prime}, \quad k\left(z_{2}^{\prime}\right)=w_{2}^{\prime}, \quad k(\infty)=\infty \tag{27.3}
\end{equation*}
$$

where

$$
z_{1}^{\prime}=g^{-1}\left(z_{1}\right), \quad z_{2}^{\prime}=g^{-1}\left(z_{2}\right)
$$

and

$$
w_{1}^{\prime}=h\left(w_{1}\right), \quad w_{2}^{\prime}=h\left(w_{2}\right)
$$

But by Step 1, equation (27.3) has a unique solution k in Möb+. So equation (27.1) has a unique solution h in Möb ${ }_{+}$.

