Lösungen zu Serie 14

Hinweise: Die Aufgaben 6-9 sind zur Wiederholung auch des älteren Stoffs aus der Vorlesung gedacht. Diese Serie können Sie nicht zur Korrektur einreichen.

1. Sei X ein einfach zusammenhängender Raum. Dann ist X semilokal einfach zusammenhängend.

Lösung:

Per Definition ist X wegzusammenhängend und es gilt $\pi_1(X, x_0) = \{1\}$ für alle $x_0 \in X$. Dies bedeutet, dass für alle $x_0 \in X$ alle Schleifen an x_0 homotop zur konstanten Schleife (nullhomotop) sind. Also ist X auch semilokal einfach zusammenhängend.

2. Sei X ein lokal wegzusammenhängender topologischer Raum. Zeigen Sie, dass für alle $x \in X$ und jede Umgebung U von x eine offene wegzusammenhängende Umgebung \widetilde{U} von x mit $\widetilde{U} \subseteq U$ existiert.

Lösung:

Sei $x \in X$ und U eine Umgebung von x. Wir behaupten, dass

$$\widetilde{U} := \left\{ z \in \mathring{U} \mid \text{es gibt einen Weg von } x \text{ nach } z \text{ in } \mathring{U} \right\}$$

eine offene Menge ist; dies ist dann die gewünschte offene, wegzusammenhängende Umgebung von x, welche offensichtlich in U enthalten ist. Sei $z \in \widetilde{U}$, also $z \in \mathring{U}$. Weil X lokal wegzusammenhängend ist, gibt es also eine wegzusammenhängende Umgebung $W \subseteq \mathring{U}$ von z und somit eine offene Menge $\widetilde{W} \subseteq W$ mit $z \in \widetilde{W}$. Nun gibt es für alle $w \in W$ einen Weg von w nach z in $W \subseteq \mathring{U}$, also auch von w nach x in \mathring{U} und somit gilt $W \subseteq \widetilde{U}$, also auch $\widetilde{W} \subseteq \widetilde{U}$. Damit ist \widetilde{W} eine offene Umgebung von z in \widetilde{U} , also \widetilde{U} offen.

- 3. Bestimmen Sie die Fundamentalgruppe von X durch das explizite Angeben der Elemente der Gruppe und die Identifikation mit einer Ihnen bekannten Gruppe, indem Sie die Deckbewegungsgruppe der universellen Überlagerung von X bestimmen. Hierbei sei
 - (a) $X = S^1$,
 - (b) $X = S^1 \times S^1$.

Lösung:

- (a) Die universelle Überlagerung von S^1 ist die in Aufgabe 4 von Serie 13 betrachtete Abbildung $\pi\colon (\mathbb{R},0) \to \left(S^1,1\right), \ r\mapsto e^{2\pi i r}$, und dort wurde $\operatorname{Deck}(\pi)=\{\varphi_k\mid k\in\mathbb{Z}\}\cong\mathbb{Z}$ bestimmt, wobei für $k\in\mathbb{Z}$ die Decktransformation φ_k gegeben ist durch $\mathbb{R}\to\mathbb{R}, \ r\mapsto r+k$. Nach dem Satz über die Deckbewegungsgruppe gibt es nun einen Isomorphismus $\pi_1\left(S^1,1\right)\cong\operatorname{Deck}(\pi)$, denn der Normalisator der trivialen charakteristischen Untergruppe $G(\pi)=\{1\}<\pi_1\left(S^1,1\right)$ ist die ganze Gruppe $\pi_1\left(S^1,1\right)$. Unter diesem Isomorphismus wird $[\alpha]\in\pi_1\left(S^1,1\right)$ die eindeutige Decktransformation $\varphi_{[\alpha]}$ zugeordnet, die 0 auf $\widetilde{\alpha}(1)$ abbildet, wobei $\widetilde{\alpha}$ die eindeutige Hochhebung von α zu $0\in\pi^{-1}(1)$ ist. Die Decktransformation φ_k entspricht nun der Hochhebung $\widetilde{\alpha}_k\colon [0,1]\to\mathbb{R}, t\mapsto kt$, der Schleife $\alpha_k\colon [0,1]\to S^1, t\mapsto e^{2\pi ikt}$, also ist $\pi_1\left(S^1,1\right)=\{\alpha_k\mid k\in\mathbb{Z}\}\cong\mathbb{Z}.$
- (b) Die universelle Überlagerung von $S^1 \times S^1$ ist die Abbildung

$$\pi: (\mathbb{R} \times \mathbb{R}, (0,0)) \to (S^1 \times S^1, (1,1)), (r,s) \mapsto (e^{2\pi i r}, e^{2\pi i s})$$

und ähnlich wie für die Überlagerung in (a) bestimmt man

$$\operatorname{Deck}(\pi) \cong \mathbb{Z} \times \mathbb{Z} \cong \{(\alpha_k, \alpha_\ell) \mid k, \ell \in \mathbb{Z}\} \cong \pi_1 \left(S^1 \times S^1, (1, 1)\right).$$

4. Sei $n \geq 3$. Bestimmen Sie die Fundamentalgruppe von $\mathbb{RP}^n \setminus \{x\}$ für $x \in \mathbb{RP}^n$. Bemerkung: Aufgabe 9 behandelt den Fall n = 2.

Lösung:

Sei $\pi: S^n \to \mathbb{RP}^n := S^n/\sim$ die Quotientenabbildung, wobei $v \sim w$ genau dann, wenn w = v oder w = -v, wie in Beispiel d) aus Woche 13 der Vorlesung und Beispiel f) aus Woche 14. Dann ist π eine Überlagerung (sogar die universelle Überlagerung).

Sei nun $v \in S^n$, sodass [v] = [-v] = x und betrachte $\pi' = \pi|_{S^n \setminus \{v, -v\}} : S^n \setminus \{v, -v\} \to \mathbb{RP}^n \setminus \{x\}$. Dann ist π' wieder eine Überlagerung (als Einschränkung einer Überlagerung). Es gilt $\operatorname{Deck}(\pi') = \{\operatorname{id}, -\operatorname{id}\}$, und wegen $S^n \setminus \{v, -v\} \cong \mathbb{R}^n \setminus \{p\}$ hat $S^n \setminus \{v, -v\}$ eine triviale Fundamentalgruppe. Nach Satz 3 aus Woche 14 gilt also $\pi_1(X, x_0) \cong \operatorname{Deck}(\pi') \cong \mathbb{Z}/2\mathbb{Z}$.

Explizit: Sei $v_0 \in S^n \setminus \{v, -v\}$ und $\widetilde{\alpha}$ ein Weg von v_0 nach $-v_0$ in $S^n \setminus \{v, -v\}$. Dann gilt $\pi_1(X, x_0) = \{1, [\alpha]\}$, wobei $\alpha = \pi \circ \widetilde{\alpha}$.

5. Sei $\pi: Y \to X$ eine Überlagerung mit wegzusammenhängenden und lokal wegzusammenhängenden topologischen Räumen X und Y und sei $x_0 \in X$. Zeigen Sie: Die Überlagerung π ist normal genau dann, wenn $\operatorname{Deck}(\pi)$ transitiv auf den Fasern $\pi^{-1}(x_0)$ operiert.

Lösung:

" \Rightarrow ": Seien y_0 und y_1 in $\pi^{-1}(x_0)$. Wir finden $\varphi \in \operatorname{Deck}(\pi)$ mit $\varphi(y_0) = y_1$ wie folgt: Sei $\widetilde{\alpha}$ ein Weg in Y von y_0 nach y_1 . Setze $\alpha := \pi \circ \widetilde{\alpha}$. Da π normal ist, ist die charakteristische Untergruppe von $\pi \colon (Y, y_0) \to (X, x_0)$ ein Normalteiler in $\pi_1(X, x_0)$, d.h. nach Satz 3 (Satz über die Deckgruppe), existiert ein $\varphi \in \operatorname{Deck}(\pi)$ mit $\varphi(y_0) = \widetilde{\alpha}(1) = y_1$.

" \Leftarrow ": Sei $y_0 \in \pi^{-1}(x_0)$. Wir zeigen, dass die charakteristische Untergruppe $G := G(Y, y_0) \subseteq \pi_1(X, x_0)$ der Überlagerung $\pi : (Y, y_0) \to (X, x_0)$ ein Normalteiler ist, d.h. dass $[\alpha]^{-1}G(Y, y_0)[\alpha] = G(Y, y_0)$ für alle $[\alpha] \in \pi_1(X, x_0)$ gilt.

Sei $[\alpha] \in \pi_1(X, x_0)$ beliebig und sei $y_1 := \widetilde{\alpha}(1)$ für eine Hochhebung $\widetilde{\alpha}$ von α zu y_0 . Es bezeichne $G(Y, y_1) \subseteq \pi_1(X, x_0)$ die charakteristische Untergruppe von $\pi \colon (Y, y_1) \to (X, x_0)$. Es gilt nun, vgl. Beweis von Satz 3 in der Vorlesung in Woche 14, dass

$$[\alpha]^{-1}G(Y, y_0)[\alpha] = G(Y, y_1). \tag{1}$$

Da Deck (π) transitiv auf $\pi^{-1}(x_0)$ operiert, existiert ein $\varphi \in \text{Deck}(\pi)$ mit $\varphi(y_0) = y_1$. Aus Korollar 3 aus der Vorlesung folgt nun, dass $G(Y, y_1) = G(Y, y_0)$. Also gilt wegen (1) auch $[\alpha]^{-1}G(Y, y_0)[\alpha] = G(Y, y_0)$.

6. Seien X und Y topologische Räume, die beide das zweite Abzählbarkeitsaxiom erfüllen. Zeigen Sie, dass dann auch $X \times Y$ das zweite Abzählbarkeitsaxiom erfüllt.

Lösung:

Nach Definition gibt es eine abzählbare Basis \mathcal{B} von X und eine abzählbare Basis \mathcal{C} von Y. Dann ist die Menge $\{U \times V \mid U \in \mathcal{B}, V \in \mathcal{C}\}$ eine abzählbare Basis für die Produkttopologie auf $X \times Y$.

7. Sei (X,d) ein metrischer Raum. Zeigen Sie, dass die Metrik $d\colon X\times X\to \mathbb{R}$ stetig ist bezüglich der Euklidischen Topologie auf \mathbb{R} und der von der Topologie $\mathcal{O}(d)$ des metrischen Raumes induzierten Produkttopologie.

Lösung:

Nach Aufgabe 1 (c) von Serie 2 genügt es zu zeigen, dass $d^{-1}((a,b)) \subseteq X \times X$ offen ist für alle $a < b \in \mathbb{R}$. Seien also $a < b \in \mathbb{R}$ und sei $(x,y) \in d^{-1}((a,b))$. Wähle

$$\epsilon = \frac{\min\{d(x,y) - a, b - d(x,y)\}}{2} > 0$$

und betrachte $U := K_{\epsilon}(x) \times K_{\epsilon}(y) \subseteq X \times X$. Wir behaupten, dass $U \subseteq d^{-1}((a,b))$ gilt, dann ist $d^{-1}((a,b))$ wie gewünscht offen. Sei $(v,w) \in U$. Dann gilt $v \in K_{\epsilon}(x), w \in K_{\epsilon}(y)$ und damit $d(x,v) < \epsilon, d(w,y) < \epsilon$. Wegen der Dreiecksungleichung für d gilt also

$$d(v, w) \le d(v, x) + d(x, w) \le d(v, x) + d(x, y) + d(y, w) < 2\epsilon + d(x, y) \le b - d(x, y) + d(x, y) = b.$$

Ähnlich kann man mit der umgekehrten Dreiecksungleichung zeigen, dass d(v, w) > a gilt, also ist $d(v, w) \in (a, b)$ und damit $(v, w) \in d^{-1}((a, b))$ wie gewünscht.

8. Sei X ein beliebiger topologischer Raum und sei Y ein Hausdorffraum. Weiter seien $f, g: X \to Y$ stetige Abbildungen. Zeigen Sie, dass

$$\{x: f(x) = g(x)\}$$

abgeschlossen ist.

Lösung:

Wir betrachten die stetige Abbildung

$$\varphi \colon X \to Y \times Y, \ x \mapsto (f(x), g(x)).$$

Es bezeichne $\Delta \subseteq Y \times Y$ die Diagonale, d.h. $\Delta = \{(y,y) \mid y \in Y\}$ (vgl. Aufgabe 5 von Serie 4). Dann ist

$${x : f(x) = g(x)} = \varphi^{-1}(\Delta).$$

Da φ stetig ist, genügt es somit zu zeigen, dass Δ in $Y \times Y$ abgeschlossen ist. Dies folgt daraus, dass Y ein Hausdorffraum ist, vgl. Aufgabe 5 (a) von Serie 4.

9. Bestimmen Sie auf zwei verschiedene Arten (direkt mit dem Satz von Seifert und van Kampen und alternativ mit Überlagerungstheorie) die Fundamentalgruppe von $\mathbb{RP}^2 \setminus \{x\}$ für $x \in \mathbb{RP}^2$.

Lösung:

Wir behaupten, dass die Fundamentalgruppe von \mathbb{RP}^2 ohne einen Punkt gleich \mathbb{Z} ist.

Beweis mit dem Satz von Seifert und van Kampen:

Wir gehen vor wie in Aufgabe 5 von Serie 9. Dazu stellen wir den projektiven Raum \mathbb{RP}^2 als Quotienten der zweidimensionalen Einheitskreisscheibe $\mathbb{D}^2 \subseteq \mathbb{R}^2$ dar mit der Äquivalenzrelation \sim auf \mathbb{D}^2 , die die Antipoden auf ihrem Rand identifiziert, d.h. $u \sim v :\Leftrightarrow u = v$ oder u = -v für $u, v \in \partial \mathbb{D}^2$ (vgl. Aufgabe 4 von Serie 4).

Ohne Beschränkung der Allgemeinheit können wir annehmen, dass der Punkt der Ursprung [(0,0)] in \mathbb{D}^2/\sim ist. Beachten Sie, dass es einen Deformationsretrakt von $\mathbb{D}^2\setminus\{[(0,0)]\}$ auf dessen Rand gibt, via die Homotopie

$$H(x,t) = x + t \left(\frac{1}{\|x\|} - 1\right) x.$$

Beachten Sie außerdem, dass $\partial \mathbb{D}^2/\sim$ homöomorph zu S^1 ist. Daher erhalten wir für $x\in\mathbb{RP}^2$, dass

$$\pi_1\left(\mathbb{RP}^2\setminus\{x\}\right) = \pi_1\left((\mathbb{D}^2/\sim)\setminus\{(0,0)\}\right) = \pi_1(\partial\mathbb{D}^2/\sim) = \pi_1(S^1) = \mathbb{Z}.$$

Beweis mit Überlagerungstheorie:

Wir betrachten die zweiblättrige Überlagerung $\pi \colon S^2 \to \mathbb{RP}^2$, die man erhält, indem man jedes Paar von Antipodenpunkten identifiziert. Außerdem wollen wir einen Punkt $u \in \mathbb{RP}^2$ fixieren, so dass wir $\pi_1 \left(\mathbb{RP}^2 \setminus \{u\} \right)$ berechnen müssen. Beachten Sie, dass $\{\pi^{-1}(u)\}$ aus 2 Punkten in S^2 besteht und

$$q := \pi|_{S^2 \setminus \{\pi^{-1}(u)\}} \colon S^2 \setminus \{\pi^{-1}(u)\} \to \mathbb{RP}^2 \setminus \{u\}$$

wiederum eine zweiblättrige Überlagerung ist. Ohne Beschränkung der Allgemeinheit können wir annehmen, dass $\pi^{-1}(u) = \{N, S\}$ der Nord- und der Südpol von S^2 sind.

Da $S^2 \setminus \{N, S\}$ homö
omorph zu \mathbb{R}^2 ohne einen Punkt ist, was wiederum homö
omorph zu S^1 ist, gilt $\pi_1(S^2 \setminus \{N, S\}) = \mathbb{Z}$.

Außerdem wissen wir, dass $q_* \colon \pi_1(S^2 \setminus \{N,S\}) \to \pi_1\left(\mathbb{RP}^2 \setminus \{u\}\right)$ injektiv ist (vgl. Korollar 2 aus der Vorlesung in Woche 13) und dass der Index von $q_*\left(\pi_1(S^2 \setminus \{N,S\})\right)$ in $\pi_1\left(\mathbb{RP}^2 \setminus \{u\}\right)$ gleich der Anzahl der Blätter der Überlagerung ist, also 2. Sei $\gamma_1 \colon [0,1] \to S^2$ eine Kurve, die die Hälfte des horizontalen Äquatorialkreises parametrisiert, und sei $\gamma_2 \colon [0,1] \to S^2$ die Kurve, die die andere Hälfte des horizontalen Äquatorialkreises parametrisiert, so dass $[\gamma_1\gamma_2]$ ein Erzeuger von $\pi_1(S^2 \setminus \{N,S\})$ ist. Beachten Sie, dass $\gamma := q \circ \gamma_1 = q \circ \gamma_2 \colon [0,1] \to \mathbb{RP}^2 \setminus \{u\}$ eine geschlossene Kurve in $\mathbb{RP}^2 \setminus \{u\}$ ist und es gilt $[\gamma] \in \pi_1(\mathbb{RP}^2 \setminus \{u\}) \setminus q_*(\pi_1(S^2 \setminus \{N,S\}))$.

Weil $q_*(\pi_1(S^2 \setminus \{p^{-1}(u)\})) < \pi_1(\mathbb{RP}^2)$ den Index 2 hat, erzeugen also $q_*(\pi_1(S^2 \setminus \{p^{-1}(u)\}))$ und $[\gamma]$ die Gruppe $\pi_1(\mathbb{RP}^2 \setminus \{u\})$. Allerdings erzeugt auch $[\gamma]^2 = [q \circ \gamma_1][q \circ \gamma_2] = [q \circ (\gamma_1\gamma_2)]$ die Gruppe $q_*(\pi_1(S^2 \setminus \{p^{-1}(u)\})) = \mathbb{Z}$. Folglich erzeugt $[\gamma]$ die Gruppe $\pi_1(\mathbb{RP}^2 \setminus \{u\})$, welche also ebenfalls \mathbb{Z} sein muss

Übrigens: Es gilt $\mathbb{RP}^2 \setminus \{x\} \cong M \setminus \partial M$, wobei M das Möbiusband ist. Also gilt

$$\pi_1\left(\mathbb{RP}^2\setminus\{x\}\right)\cong\pi_1(M\setminus\partial M)\cong\pi_1\left(S^1\right)$$

wegen $M \setminus \partial M \simeq S^1$ (z.B. weil die Kernlinie des Möbiusbandes ein Deformationsretrakt von $M \setminus \partial M$ ist).