Sheet 1

Due: To be handed in before 03.03.2023 at 12:00.

1. Exercise

Let A, B, C be three events. Express the following events using A, B, C and the operations \cap, \cup, c (complement of a set).

- $E_1 =$ "At least one of the events A, B, C occurs."
- $E_2 =$ "At most one of the events A, B, C occurs."
- $E_3 =$ "Exactly one of the events A, B, C occurs."
- $E_4 =$ "B can only occur when A or C occurs."
- $E_5 =$ "If A occurs, then B occurs as well."

 E_6 = "At least one of the events A, B, C occurs, but not all of them at the same time."

2. Exercise

We throw a green and a red die and consider the following events.

 $E_1 =$ "None of the numbers is bigger than 2."

 $E_2 =$ "The numbers are equal."

 $E_3 =$ "The number on the red die is twice the number on the green die."

 $E_4 =$ "The number on the red die is exactly one smaller or one bigger than the number on the green die."

 $E_5 =$ "If the number on the red die is at most 5, then the number on the green die is equal to 6."

(a) Write down the sample space Ω for this random experiment and express the above events as subsets of Ω .

(b) Which one of the above events remains unchanged if we do not know anymore the color of the dice?

3. Exercise

Consider an urn containing N numbered balls, K of which are red and N - K are white. Without loss of generality, we may assume that the balls with numbers $1, 2, \ldots, K$ are red. Now we draw <u>without</u> replacement n balls from the urn $(n \leq N)$.

- (a) What is the sample space Ω that corresponds to this random experiment?
- (b) Find the cardinality $|\Omega|$ of Ω .
- (c) Consider the event $R_k = \{$ there are exactly k red balls in the sample $\}$. Find the cardinality $|R_k|$ for every $k \in \{0, \dots, K\}$.
- (d) Compute the ratio $|R_k|/|\Omega|$. Assuming that $K, N \to \infty$ and $K/N \to p$ for a $p \in (0, 1)$, to which limit does $|R_k|/|\Omega|$ converge?