Sheet 11

Due: To be handed in before 19.05.2023 at 12:00.

1. Exercise

For an integer $n \ge 1$ and $c \in \{0, \ldots, n-1\}$, consider the function

$$\beta(\theta) = \sum_{x=c+1}^{n} \binom{n}{x} \theta^x (1-\theta)^{n-x}, \qquad \theta \in (0,1).$$

Note that $\beta(\theta) = \mathbb{P}_{\theta}(X > c)$ when $X \sim Bin(n, \theta)$. The goal of this exercise is to show that $\theta \mapsto \beta(\theta)$ is non-decreasing.

(a) Let us denote $p_{\theta}(x) = {n \choose x} \theta^x (1-\theta)^{n-x}$, $x \in \{0, \ldots, n\}$. Show that for any $0 < \theta_1 < \theta_2 < 1$ there exists $x_0 \in \{0, \ldots, n-1\}$ such that

$$p_{\theta_2}(x) \begin{cases} \leq p_{\theta_1}(x) & \forall x \leq x_0, \\ > p_{\theta_1}(x) & \forall x > x_0. \end{cases}$$

(b) Show that $\theta \mapsto \beta(\theta)$ is non-decreasing for any fixed $c \in \{0, \ldots, n-1\}$.

2. Exercise

An optical detector can suffer from different sources of inaccuracy. In a given experiment, it was possible to measure the noise level. The following values were observed:

It is assumed that the noise follows a Gaussian distribution with unknown mean μ and variance σ^2 . We want to test

 $H_0: \mu = 0$ versus $H_1: \mu \neq 0$.

We take $\alpha = 0.05$.

- (a) Construct a suitable test for this problem.
- (b) What is your decision? We give:
 - the 0.95-quantile of $\mathcal{N}(0,1) = 1.64$, the 0.975-quantile of $\mathcal{N}(0,1) = 1.96$, the 0.95-quantile of $\mathcal{T}_{15} = 1.75$, the 0.975-quantile of $\mathcal{T}_{15} = 2.13$.