Sheet 11

Due: To be handed in before 19.05.2023 at 12:00.

1. Exercise

For an integer $n \geq 1$ and $c \in\{0, \ldots, n-1\}$, consider the function

$$
\beta(\theta)=\sum_{x=c+1}^{n}\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, \quad \theta \in(0,1) .
$$

Note that $\beta(\theta)=\mathbb{P}_{\theta}(X>c)$ when $X \sim \operatorname{Bin}(n, \theta)$. The goal of this exercise is to show that $\theta \mapsto \beta(\theta)$ is non-decreasing.
(a) Let us denote $p_{\theta}(x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, x \in\{0, \ldots, n\}$. Show that for any $0<\theta_{1}<\theta_{2}<1$ there exists $x_{0} \in\{0, \ldots, n-1\}$ such that

$$
p_{\theta_{2}}(x) \begin{cases}\leq p_{\theta_{1}}(x) & \forall x \leq x_{0} \\ >p_{\theta_{1}}(x) & \forall x>x_{0}\end{cases}
$$

(b) Show that $\theta \mapsto \beta(\theta)$ is non-decreasing for any fixed $c \in\{0, \ldots, n-1\}$.

2. Exercise

An optical detector can suffer from different sources of inaccuracy. In a given experiment, it was possible to measure the noise level. The following values were observed:

$$
\begin{aligned}
& 1.76, \quad-0.89, \quad 1.04, \quad-3.64, \quad-2.11, \quad 2.73, \quad 0.3, \quad-3.19 \\
& -1.24, \quad-1.31, \quad 0.66, \quad-1.58, \quad-4.64, \quad 0.13, \quad-2.96, \quad 0.71 .
\end{aligned}
$$

It is assumed that the noise follows a Gaussian distribution with unknown mean μ and variance σ^{2}. We want to test

$$
H_{0}: \mu=0 \quad \text { versus } \quad H_{1}: \mu \neq 0 .
$$

We take $\alpha=0.05$.
(a) Construct a suitable test for this problem.
(b) What is your decision? We give:
the 0.95 -quantile of $\mathcal{N}(0,1)=1.64$,
the 0.975 -quantile of $\mathcal{N}(0,1)=1.96$,
the 0.95 -quantile of $\mathcal{T}_{15}=1.75$,
the 0.975 -quantile of $\mathcal{T}_{15}=2.13$.

