Sheet 11

Due: To be handed in before 19.05.2023 at 12:00.

1. Exercise

For an integer $n \geq 1$ and $c \in\{0, \ldots, n-1\}$, consider the function

$$
\beta(\theta)=\sum_{x=c+1}^{n}\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, \quad \theta \in(0,1)
$$

Note that $\beta(\theta)=\mathbb{P}_{\theta}(X>c)$ when $X \sim \operatorname{Bin}(n, \theta)$. The goal of this exercise is to show that $\theta \mapsto \beta(\theta)$ is non-decreasing.
(a) Let us denote $p_{\theta}(x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, x \in\{0, \ldots, n\}$. Show that for any $0<\theta_{1}<\theta_{2}<1$ there exists $x_{0} \in\{0, \ldots, n-1\}$ such that

$$
p_{\theta_{2}}(x) \begin{cases}\leq p_{\theta_{1}}(x) & \forall x \leq x_{0} \\ >p_{\theta_{1}}(x) & \forall x>x_{0}\end{cases}
$$

(b) Show that $\theta \mapsto \beta(\theta)$ is non-decreasing for any fixed $c \in\{0, \ldots, n-1\}$.

Solution:

(a) We have that $\sum_{x=0}^{n} p_{\theta_{1}}(x)=\sum_{x=0}^{n} p_{\theta_{2}}(x)=1$, so $\sum_{x=0}^{n} p_{\theta_{1}}(x)-p_{\theta_{2}}(x)=0$. Thus, $p_{\theta_{2}}-p_{\theta_{1}}$ cannot be of a constant sign on $\{0, \ldots, n\}$. In other words, there are $x \in\{0, \ldots, n\}$ for which $p_{\theta_{2}}(x) / p_{\theta_{1}}(x) \leq 1$ and others for which $p_{\theta_{2}}(x) / p_{\theta_{1}}(x)>1$. Call S_{-}and S_{+}the sets of the former and the latter x 's. Now,

$$
\frac{p_{\theta_{2}}(x)}{p_{\theta_{1}}(x)}=\frac{\theta_{2}^{x}\left(1-\theta_{2}\right)^{n-x}}{\theta_{1}^{x}\left(1-\theta_{1}\right)^{n-x}}=(\underbrace{\frac{\theta_{2}}{\theta_{1}} \frac{1-\theta_{1}}{1-\theta_{2}}}_{>1})^{x}\left(\frac{1-\theta_{2}}{1-\theta_{1}}\right)^{n}
$$

which means that the function $x \mapsto p_{\theta_{2}}(x) / p_{\theta_{1}}(x)$ is strictly increasing on $\{0, \ldots, n\}$. Hence, S_{-}and S_{+}have to be of the form $S_{-}=\left\{0, \ldots, x_{0}\right\}$ and $S_{1}=\left\{x_{0}+1, \ldots, n\right\}$ for some $x_{0} \in\{0, \ldots, n-1\}$. Note that x_{0} depends on θ_{1} and θ_{2}.
(b) Let $0<\theta_{1}<\theta_{2}<1$. We want to show that $\beta\left(\theta_{1}\right) \leq \beta\left(\theta_{2}\right)$. We have

$$
\begin{aligned}
\beta\left(\theta_{2}\right)-\beta\left(\theta_{1}\right) & =\sum_{x=c+1}^{n} p_{\theta_{2}}(x)-p_{\theta_{1}}(x) \\
& =\sum_{x=0}^{x_{0}}\left(p_{\theta_{2}}(x)-p_{\theta_{1}}(x)\right) \mathbb{1}_{x \geq c+1}+\sum_{x=x_{0}+1}^{n}\left(p_{\theta_{2}}(x)-p_{\theta_{1}}(x)\right) \mathbb{1}_{x \geq c+1}
\end{aligned}
$$

with

$$
\mathbb{1}_{x \geq c+1} \begin{cases}\leq \mathbb{1}_{x_{0} \geq c+1} & \forall x \leq x_{0} \\ \geq \mathbb{1}_{x_{0} \geq c+1} & \forall x>x_{0}\end{cases}
$$

implying that

$$
\beta\left(\theta_{2}\right)-\beta\left(\theta_{1}\right) \geq \mathbb{1}_{x_{0} \geq c+1} \sum_{x=0}^{x_{0}} p_{\theta_{2}}(x)-p_{\theta_{1}}(x)+\mathbb{1}_{x_{0} \geq c+1} \sum_{x=x_{0}+1}^{n} p_{\theta_{2}}(x)-p_{\theta_{1}}(x)
$$

since

$$
p_{\theta_{2}}(x)-p_{\theta_{1}}(x) \begin{cases}\leq 0 & \forall x \leq x_{0} \\ >0 & \forall x>x_{0}\end{cases}
$$

Thus,

$$
\beta\left(\theta_{2}\right)-\beta\left(\theta_{1}\right) \geq \mathbb{1}_{x_{0} \geq c+1} \sum_{x=0}^{n} p_{\theta_{2}}(x)-p_{\theta_{1}}(x)=0
$$

so $\beta\left(\theta_{2}\right) \geq \beta\left(\theta_{1}\right)$.

2. Exercise

An optical detector can suffer from different sources of inaccuracy. In a given experiment, it was possible to measure the noise level. The following values were observed:

$$
\begin{aligned}
& 1.76, \quad-0.89, \quad 1.04, \quad-3.64, \quad-2.11, \quad 2.73, \quad 0.3, \quad-3.19 \\
& -1.24, \quad-1.31, \quad 0.66, \quad-1.58,
\end{aligned}-4.64, \quad 0.13, \quad-2.96, \quad 0.71 .
$$

It is assumed that the noise follows a Gaussian distribution with unknown mean μ and variance σ^{2}. We want to test

$$
H_{0}: \mu=0 \quad \text { versus } \quad H_{1}: \mu \neq 0 .
$$

We take $\alpha=0.05$.
(a) Construct a suitable test for this problem.
(b) What is your decision? We give:
the 0.95 -quantile of $\mathcal{N}(0,1)=1.64$,
the 0.975 -quantile of $\mathcal{N}(0,1)=1.96$,
the 0.95 -quantile of $\mathcal{T}_{15}=1.75$,
the 0.975 -quantile of $\mathcal{T}_{15}=2.13$.

Solution:

(a) Under H_{0}, we know that $\sqrt{n} \bar{X}_{n} / S_{n} \sim \mathcal{T}_{(n-1)}$ with $S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ and $n=16$. Thus, a suitable test is the following student test

$$
\phi\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}1 & \text { if } \sqrt{n}\left|\bar{X}_{n}\right| / S_{n}>t_{n-1,1-\alpha / 2} \\ 0 & \text { otherwise }\end{cases}
$$

where $t_{n-1,1-\alpha / 2}$ is the $(1-\alpha / 2)$-quantile of $\mathcal{T}_{(n-1)}$.
(b) We compute $\bar{X}_{n}=-0.889, S_{n}=2.077$, and $\sqrt{16}\left|\bar{X}_{n}\right| / S_{n}=1.712<2.13$. We do not reject H_{0}.

