Sheet 12

Due: To be handed in before 26.05.2023 at 12:00.

1. Exercise

When X_{1}, \ldots, X_{n} are i.i.d. $\sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and we want to test

$$
H_{0}: \quad \mu=0 \quad \text { versus } \quad H_{1}: \quad \mu \neq 0,
$$

one could either use the Student-test

$$
\Phi_{1}\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}1 & \text { if } \frac{\sqrt{n}\left|\bar{X}_{n}\right|}{S_{n}}>t_{n-1,1-\alpha / 2} \\ 0 & \text { otherwise }\end{cases}
$$

with $S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ and $t_{n-1,1-\alpha / 2}$ the $(1-\alpha / 2)$-quantile of $\mathcal{T}_{(n-1)}$ or the sign test

$$
\Phi_{2}\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}1 & \text { if }\left|T_{n}-n / 2\right|>c_{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

with $T_{n}=\sum_{i=1}^{n} \mathbb{1}_{X_{i}>0}$ and c_{α} as in question (1.c).
(a) Explain why one can use Φ_{2} in this testing problem.
(b) Assume that $\sigma=2$ but this value is still unknown to you. Below, we give the values of the power of Φ_{1} and Φ_{2} for different sample sizes n and values $\mu \in \Theta_{1}=\mathbb{R} \backslash\{0\}$.

$\mu \backslash n$	10	10	20	20	50	50
0.5	0.61	0.04	0.79	0.12	0.95	0.22
-1	0.81	0.13	0.96	0.38	0.99	0.73
2	0.99	0.51	≈ 1	0.91	≈ 1	0.99

In the table, the first, third, and fifth column show $\beta_{1}(\mu)$ for $n=10,20$, respectively 50 , and the second, fourth, and sixth column show $\beta_{2}(\mu)$ for $n=10,20$, respectively 50 .
It seems that both $\beta_{1}(\mu)$ and $\beta_{2}(\mu)$ increase with n and $|\mu|$ and $\beta_{1}(\mu)>\beta_{2}(\mu)$. Is this expected?

2. Exercise

Application of the 2-sample student test: Samples of wood were obtained from the core and periphery of a certain Byzantine church. The date of wood was determined, yielding the following data.

core: | 1294 | 1279 | 1272 | 1264 | 1263 | 1254 | 1251 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1250 | 1248 | 1240 | 1232 | 1220 | 1218 | 1210 |

periphery: | 1284 | 1272 | 1256 | 1254 | 1242 | 1274 | 1264 | 1255 | 1250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Use the 2 -sample t-test (or student test) of level 0.05 to determine whether the mean age of the core is the same as the mean age of the periphery. We give $t_{21,0.975}=2.079$.

