Sheet 12

Due: To be handed in before 26.05.2023 at 12:00.

1. Exercise

When X_{1}, \ldots, X_{n} are i.i.d. $\sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and we want to test

$$
H_{0}: \quad \mu=0 \quad \text { versus } \quad H_{1}: \quad \mu \neq 0
$$

one could either use the Student-test

$$
\Phi_{1}\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}1 & \text { if } \frac{\sqrt{n}\left|\bar{X}_{n}\right|}{S_{n}}>t_{n-1,1-\alpha / 2} \\ 0 & \text { otherwise }\end{cases}
$$

with $S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ and $t_{n-1,1-\alpha / 2}$ the $(1-\alpha / 2)$-quantile of $\mathcal{T}_{(n-1)}$ or the sign test

$$
\Phi_{2}\left(X_{1}, \ldots, X_{n}\right)= \begin{cases}1 & \text { if }\left|T_{n}-n / 2\right|>c_{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

with $T_{n}=\sum_{i=1}^{n} \mathbb{1}_{X_{i}>0}$ and c_{α} as in question (1.c).
(a) Explain why one can use Φ_{2} in this testing problem.
(b) Assume that $\sigma=2$ but this value is still unknown to you. Below, we give the values of the power of Φ_{1} and Φ_{2} for different sample sizes n and values $\mu \in \Theta_{1}=\mathbb{R} \backslash\{0\}$.

$\mu \backslash n$	10	10	20	20	50	50
0.5	0.61	0.04	0.79	0.12	0.95	0.22
-1	0.81	0.13	0.96	0.38	0.99	0.73
2	0.99	0.51	≈ 1	0.91	≈ 1	0.99

In the table, the first, third, and fifth column show $\beta_{1}(\mu)$ for $n=10,20$, respectively 50 , and the second, fourth, and sixth column show $\beta_{2}(\mu)$ for $n=10,20$, respectively 50 .
It seems that both $\beta_{1}(\mu)$ and $\beta_{2}(\mu)$ increase with n and $|\mu|$ and $\beta_{1}(\mu)>\beta_{2}(\mu)$. Is this expected?

Solution:

(a) This can be explained by the fact that the expectation μ is also the median of the distribution of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ and that the cdf of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is continuous at μ. In fact, the density of the distribution of $\mathcal{N}\left(\mu, \sigma^{2}\right)$ is symmetric around $\mu: f(\mu+x)=f(\mu-x)$ for all $x \in \mathbb{R}$. Thus,

$$
\begin{aligned}
F(\mu) & =\int_{-\infty}^{\mu} f(t) d t=\int_{-\infty}^{0} f(\mu+x) d x \\
& =\int_{-\infty}^{0} f(\mu-x) d x=\int_{\mu}^{\infty} f(t) d t=1-\int_{-\infty}^{\mu} f(t) d t=1-F(\mu) .
\end{aligned}
$$

Hence, $F(\mu)=1 / 2$. F is continuous on \mathbb{R} because it is $C^{1}(\mathbb{R})$ with $F^{\prime}=f$, so F is continuous at μ. F is strictly increasing and, hence, bijective from \mathbb{R} to $(0,1)$. Thus, $\mu=F^{-1}(1 / 2)$, where F^{-1} is the inverse of F. This shows that μ is the median of $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
(b) When n increases, we have more information about the unknown distribution and, hence, it is expected that both $\beta_{1}(\mu)$ and $\beta_{2}(\mu)$ increase with n for any $\mu \in \Theta_{1}$.
When $|\mu|$ increases, the evidence against the null hypothesis $H_{0}: \mu=0$ becomes stronger and, hence, it is expected that the power increases with $|\mu|$.

It is also expected that Φ_{2} is less powerful than Φ_{1} : Φ_{2} does not at all use the information that the data are i.i.d. Gaussian distributed.

2. Exercise

Application of the 2-sample student test: Samples of wood were obtained from the core and periphery of a certain Byzantine church. The date of wood was determined, yielding the following data.

core: | 1294 | 1279 | 1272 | 1264 | 1263 | 1254 | 1251 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1250 | 1248 | 1240 | 1232 | 1220 | 1218 | 1210 |

periphery: | 1284 | 1272 | 1256 | 1254 | 1242 | 1274 | 1264 | 1255 | 1250 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Use the 2-sample t-test (or student test) of level 0.05 to determine whether the mean age of the core is the same as the mean age of the periphery. We give $t_{21,0.975}=2.079$.

Solution:

The 2-sample t-test is

$$
\Phi\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}\right)= \begin{cases}1 & \text { if } \sqrt{\frac{n m}{n+m}} \frac{\left|\bar{X}_{n}-\bar{Y}_{m}\right|}{S_{n, m}}>t_{n+m-2,1-\alpha / 2} \\ 0 & \text { otherwise }\end{cases}
$$

where $t_{n+m-2,1-\alpha / 2}$ is the $(1-\alpha / 2)$-quantile of $\mathcal{T}_{(n+m-2)}$ and

$$
S_{n, m}^{2}=\frac{1}{n+m-2}\left(\sum_{i=1}^{m}\left(X_{i}-\bar{X}_{n}\right)^{2}+\sum_{j=1}^{m}\left(Y_{j}-\bar{Y}_{m}\right)^{2}\right) .
$$

Here: $n=14, X_{1}, \ldots, X_{n}$ are the dates for the wood taken from the core; $m=9, Y_{1}, \ldots, Y_{n}$ are the dates for the wood taken from the periphery. The underlying assumption is that X_{1}, \ldots, X_{n} are i.i.d. $\sim \mathcal{N}\left(\mu_{1}, \sigma^{2}\right)$, and Y_{1}, \ldots, Y_{m} are i.i.d. $\sim \mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$, and $\left(X_{1}, \ldots, X_{n}\right) \Perp\left(Y_{1}, \ldots, Y_{m}\right)$. We want to test

$$
H_{0}: \quad \mu_{1}=\mu_{2} \quad \text { versus } \quad H_{1}: \quad \mu_{1} \neq \mu_{2}
$$

We have $\bar{X}_{n}=1249.64$ and $\bar{Y}_{m}=1261.22$. Then,

core- $\bar{X}_{n}:$| 44.36 | 29.36 | 22.36 | 14.36 | 13.36 | 4.36 | 1.36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.36 | -1.64 | -9.64 | -17.64 | -29.64 | -31.64 | -39.64 |

periphery- $\bar{Y}_{m}:$| 22.78 | 10.78 | -5.22 | -7.22 | -19.22 | 12.78 | 2.78 | -6.22 | -11.22 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | and $S_{n, m}^{2}=429.1795$. Thus,

$$
\left|T_{n, m}\right|:=\sqrt{\frac{n m}{n+m}} \frac{\left|\bar{X}_{n}-\bar{Y}_{m}\right|}{S_{n, m}}=\sqrt{\frac{14 \times 9}{23}} \frac{|1249.64-1261.22|}{\sqrt{429.1795}}=1.308
$$

Since $\left|T_{n, m}\right|<t_{21,0.975}$, we do not have enough evidence against H_{0}.

