Sheet 12

Due: To be handed in before 26.05.2023 at 12:00.

1. Exercise

When X_1, \ldots, X_n are i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$ and we want to test

$$H_0: \quad \mu = 0 \qquad \text{versus} \qquad H_1: \quad \mu \neq 0,$$

one could either use the Student-test

$$\Phi_1(X_1,\ldots,X_n) = \begin{cases} 1 & \text{if } \frac{\sqrt{n}|\bar{X}_n|}{S_n} > t_{n-1,1-\alpha/2}, \\ 0 & \text{otherwise} \end{cases}$$

with $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ and $t_{n-1,1-\alpha/2}$ the $(1 - \alpha/2)$ -quantile of $\mathcal{T}_{(n-1)}$ or the sign test

$$\Phi_2(X_1, \dots, X_n) = \begin{cases} 1 & \text{if } |T_n - n/2| > c_\alpha, \\ 0 & \text{otherwise} \end{cases}$$

with $T_n = \sum_{i=1}^n \mathbb{1}_{X_i > 0}$ and c_α as in question (1.c).

- (a) Explain why one can use Φ_2 in this testing problem.
- (b) Assume that $\sigma = 2$ but this value is still unknown to you. Below, we give the values of the power of Φ_1 and Φ_2 for different sample sizes n and values $\mu \in \Theta_1 = \mathbb{R} \setminus \{0\}$.

$\mu \setminus n$	10	10	20	20	50	50
0.5	0.61	0.04	0.79	0.12	0.95	0.22
-1	0.81	0.13	0.96	0.38	0.99	0.73
2	0.99	0.51	≈ 1	0.91	≈ 1	0.99

In the table, the first, third, and fifth column show $\beta_1(\mu)$ for n = 10, 20, respectively 50, and the second, fourth, and sixth column show $\beta_2(\mu)$ for n = 10, 20, respectively 50.

It seems that both $\beta_1(\mu)$ and $\beta_2(\mu)$ increase with n and $|\mu|$ and $\beta_1(\mu) > \beta_2(\mu)$. Is this expected?

Solution:

(a) This can be explained by the fact that the expectation μ is also the median of the distribution of $\mathcal{N}(\mu, \sigma^2)$ and that the cdf of $\mathcal{N}(\mu, \sigma^2)$ is continuous at μ . In fact, the density of the distribution of $\mathcal{N}(\mu, \sigma^2)$ is symmetric around μ : $f(\mu + x) = f(\mu - x)$ for all $x \in \mathbb{R}$. Thus,

$$F(\mu) = \int_{-\infty}^{\mu} f(t)dt = \int_{-\infty}^{0} f(\mu + x)dx$$

= $\int_{-\infty}^{0} f(\mu - x)dx = \int_{\mu}^{\infty} f(t)dt = 1 - \int_{-\infty}^{\mu} f(t)dt = 1 - F(\mu).$

Hence, $F(\mu) = 1/2$. F is continuous on \mathbb{R} because it is $C^1(\mathbb{R})$ with F' = f, so F is continuous at μ . F is strictly increasing and, hence, bijective from \mathbb{R} to (0, 1). Thus, $\mu = F^{-1}(1/2)$, where F^{-1} is the inverse of F. This shows that μ is the median of $\mathcal{N}(\mu, \sigma^2)$.

(b) When n increases, we have more information about the unknown distribution and, hence, it is expected that both $\beta_1(\mu)$ and $\beta_2(\mu)$ increase with n for any $\mu \in \Theta_1$.

When $|\mu|$ increases, the evidence against the null hypothesis H_0 : $\mu = 0$ becomes stronger and, hence, it is expected that the power increases with $|\mu|$.

It is also expected that Φ_2 is less powerful than Φ_1 : Φ_2 does not at all use the information that the data are i.i.d. Gaussian distributed.

2. Exercise

Application of the 2-sample student test: Samples of wood were obtained from the core and periphery of a certain Byzantine church. The date of wood was determined, yielding the following data.

<u>CC</u>	ore:	1294	1279		1272		1264		1263 1		1254 1		251			
		1250	1248	1	240	12	32	12	220	12	218	12	210			
periphery:	128	4 127	2 12	56	125	4	124	2	127	4	126	4	125	$5 \mid$	12	50

Use the 2-sample t-test (or student test) of level 0.05 to determine whether the mean age of the core is the same as the mean age of the periphery. We give $t_{21,0.975} = 2.079$.

Solution:

The 2-sample t-test is

$$\Phi(X_1, \dots, X_n, Y_1, \dots, Y_m) = \begin{cases} 1 & \text{if } \sqrt{\frac{nm}{n+m}} \frac{|\bar{X}_n - \bar{Y}_m|}{S_{n,m}} > t_{n+m-2, 1-\alpha/2}, \\ 0 & \text{otherwise,} \end{cases}$$

where $t_{n+m-2,1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile of $\mathcal{T}_{(n+m-2)}$ and

$$S_{n,m}^2 = \frac{1}{n+m-2} \left(\sum_{i=1}^m (X_i - \bar{X}_n)^2 + \sum_{j=1}^m (Y_j - \bar{Y}_m)^2 \right).$$

<u>Here:</u> $n = 14, X_1, \ldots, X_n$ are the dates for the wood taken from the core; $m = 9, Y_1, \ldots, Y_n$ are the dates for the wood taken from the periphery. The underlying assumption is that X_1, \ldots, X_n are i.i.d. $\sim \mathcal{N}(\mu_1, \sigma^2)$, and Y_1, \ldots, Y_m are i.i.d. $\sim \mathcal{N}(\mu_2, \sigma^2)$, and $(X_1, \ldots, X_n) \perp (Y_1, \ldots, Y_m)$. We want to test

 $H_0: \quad \mu_1 = \mu_2 \qquad \text{versus} \qquad H_1: \quad \mu_1 \neq \mu_2.$

We have $\bar{X}_n = 1249.64$ and $\bar{Y}_m = 1261.22$. Then,

periphery-
$$\bar{Y}_m$$
: 22.78 | 10.78 | -5.22 | -7.22 | -19.22 | 12.78 | 2.78 | -6.22 | -11.22

and $S_{n,m}^2 = 429.1795$. Thus,

$$|T_{n,m}| := \sqrt{\frac{nm}{n+m}} \frac{|\bar{X}_n - \bar{Y}_m|}{S_{n,m}} = \sqrt{\frac{14 \times 9}{23}} \frac{|1249.64 - 1261.22|}{\sqrt{429.1795}} = 1.308.$$

Since $|T_{n,m}| < t_{21,0.975}$, we do not have enough evidence against H_0 .