Sheet 2

Due: To be handed in before 10.03.2023 at 12:00.

1. Exercise

The goal of this exercise is to show that for any n events A_{1}, \ldots, A_{n} it holds that

$$
\begin{equation*}
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{n}\right)=\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \mathbb{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right) . \tag{1}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
\mathbb{1}_{A_{1} \cup \ldots \cup A_{n}}=1-\prod_{i=1}^{n}\left(1-\mathbb{1}_{A_{i}}\right) \tag{2}
\end{equation*}
$$

(b) Derive formula (1) from (2).

Hint: You can use the facts that $\mathbb{E}\left[\mathbb{1}_{A}\right]=\mathbb{P}(A)$ for any event A and that the operator \mathbb{E} is linear.

Solution:

(a) For any set B, we have the identity $\mathbb{1}_{B}+\mathbb{1}_{B^{c}}=1$. Also, for any two sets B_{1} and B_{2}, we have the identity $\mathbb{1}_{B_{1} \cap B_{2}}=\mathbb{1}_{B_{1}} \mathbb{1}_{B_{2}}$, which generalizes to $\mathbb{1}_{B_{1} \cap \cdots \cap B_{n}}=\prod_{i=1}^{n} \mathbb{1}_{B_{i}}$. Thus,

$$
1-\mathbb{1}_{A_{1} \cup \cdots \cup A_{n}}=\mathbb{1}_{\left(A_{1} \cup \cdots \cup A_{n}\right)^{c}}=\mathbb{1}_{A_{1}^{c} \cap \cdots \cap A_{n}^{c}}=\prod_{i=1}^{n} \mathbb{1}_{A_{i}^{c}}=\prod_{i=1}^{n}\left(1-\mathbb{1}_{A_{i}}\right),
$$

from which we get

$$
\mathbb{1}_{A_{1} \cup \ldots \cup A_{n}}=1-\prod_{i=1}^{n}\left(1-\mathbb{1}_{A_{i}}\right)
$$

(b) Using the hint, we can write that

$$
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{n}\right)=\mathbb{E}\left[\mathbb{1}_{A_{1} \cup \cdots \cup A_{n}}\right]=1-\mathbb{E}\left[\prod_{i=1}^{n}\left(1-\mathbb{1}_{A_{i}}\right)\right] .
$$

Now, for any given real numbers b_{1}, \ldots, b_{n}, we have that

$$
\prod_{i=1}^{n}\left(1+b_{i}\right)=1+\sum_{k=1}^{n} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} b_{i_{1}} \cdot \ldots \cdot b_{i_{k}} .
$$

Hence, for any $\omega \in \Omega$,

$$
\prod_{i=1}^{n}\left(1-\mathbb{1}_{A_{i}}(\omega)\right)=1+\sum_{k=1}^{n}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \mathbb{1}_{A_{i_{1}}}(\omega) \cdot \ldots \cdot \mathbb{1}_{A_{i_{k}}}(\omega) .
$$

It follows that

$$
-\prod_{i=1}^{n}\left(1-\mathbb{1}_{A_{i}}\right)=-1+\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \mathbb{1}_{A_{i_{1}}} \cdot \ldots \cdot \mathbb{1}_{A_{i_{k}}}
$$

and

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cup \cdots \cup A_{n}\right) & =\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \mathbb{E}\left[\mathbb{1}_{A_{i_{1}}} \cdot \ldots \cdot \mathbb{1}_{A_{i_{k}}}\right] \\
& =\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \mathbb{E}\left[\mathbb{1}_{A_{i_{1}} \cap \cdots \cap A_{i_{k}}}\right] \\
& =\sum_{k=1}^{n}(-1)^{k+1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \mathbb{P}\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right) .
\end{aligned}
$$

2. Exercise

Each of three people tosses a coin. We assume that all possible outcomes have the same probability. What is the probability of someone being the "odd one out"? That is, two of the players obtain the same outcome, while the "odd one out" gets a different outcome.

Hint: Start with writing down Ω and the event of being the "odd one out".

Solution:

In this experiment, there are eight possible outcomes depending on whether each toss results in H or T :

$$
\Omega=\{H H H, T H H, H T H, H H T, H T T, T T H, T H T, T T T\} .
$$

To compute the probability of being the "odd one out", it is more practical to consider the complement of this event:

$$
\mathbb{P}(\text { being the "odd one out" })=1-\mathbb{P}(H H H \text { or } T T T)=1-\mathbb{P}(H H H)-\mathbb{P}(T T T)=1-\frac{2}{8}=\frac{3}{4} .
$$

3. Exercise

An urn contains three red, three black and two white balls.
(a) Two balls are drawn from the urn without replacement. What is the probability that they are of different colors?
(b) Now, three balls are drawn from the urn without replacement. What is the probability that they are of exactly two different colors?

Solution:

(a) In the following, we use R, B and W to indicate if a ball is red, black or white so that the urn contains $R_{1}, R_{2}, R_{3}, B_{1}, B_{2}, B_{3}, W_{1}$ and W_{2}. If we ignore the order in which the balls are drawn, we have that

$$
\begin{aligned}
\Omega=\{ & \left\{W_{1}, W_{2}\right\}, \\
& \left\{W_{1}, R_{1}\right\},\left\{W_{1}, R_{2}\right\},\left\{W_{1}, R_{3}\right\},\left\{W_{2}, R_{1}\right\},\left\{W_{2}, R_{2}\right\},\left\{W_{2}, R_{3}\right\}, \\
& \left\{W_{1}, B_{1}\right\},\left\{W_{1}, B_{2}\right\},\left\{W_{1}, B_{3}\right\},\left\{W_{2}, B_{1}\right\},\left\{W_{2}, B_{2}\right\},\left\{W_{2}, B_{3}\right\}, \\
& \left\{R_{1}, R_{2}\right\},\left\{R_{1}, R_{3}\right\},\left\{R_{2}, R_{3}\right\}, \\
& \left\{R_{1}, B_{1}\right\},\left\{R_{1}, B_{2}\right\},\left\{R_{1}, B_{3}\right\},\left\{R_{2}, B_{1}\right\},\left\{R_{2}, B_{2}\right\},\left\{R_{2}, B_{3}\right\},\left\{R_{3}, B_{1}\right\},\left\{R_{3}, B_{2}\right\},\left\{R_{3}, B_{3}\right\}, \\
& \left.\left\{B_{1}, B_{2}\right\},\left\{B_{1}, B_{3}\right\},\left\{B_{2}, B_{3}\right\}\right\} .
\end{aligned}
$$

Let $A=\{$ The drawn balls are of different colors $\}$. Then

$$
\mathbb{P}(A)=\frac{|A|}{|\Omega|}=1-\frac{\left|A^{c}\right|}{|\Omega|}=1-\frac{7}{1+6 \cdot 2+3 \cdot 2+9}=1-\frac{7}{28}=\frac{3}{4} .
$$

Note that $|\Omega|=\binom{8}{2}=\frac{8!}{2!6!}=28$. Here, we used the facts that all elements in Ω occur with the same probability and that

$$
A^{c}=\left\{\left\{W_{1}, W_{2}\right\},\left\{R_{1}, R_{2}\right\},\left\{R_{1}, R_{3}\right\},\left\{R_{2}, R_{3}\right\},\left\{B_{1}, B_{2}\right\},\left\{B_{1}, B_{3}\right\},\left\{B_{2}, B_{3}\right\}\right\} .
$$

(b) Now, the experiment is to draw three balls instead of two. There are (at least) two ways to compute the probability of $A=\{$ The balls are of exactly two different colors $\}$. We can either compute $\mathbb{P}(A)$ directly or use $\mathbb{P}(A)=1-\mathbb{P}\left(A^{c}\right)$.

- Computing $\mathbb{P}(A)$ directly:

Note that $\mathbb{P}(A)=|A| /|\Omega|$. It is not necessary to list all outcomes in Ω because we know that $|\Omega|=\binom{8}{3}$ (we again ignore the order in which the balls are drawn). To compute $|A|$, we need to count all possible configurations with $2 W$ and R (call it A_{1}); $2 W$ and B (call it A_{2}); 2R and B (call it A_{3}); $2 B$ and R (call it A_{4}); 2R and W (call it A_{5}); $2 B$ and W (call it A_{6}). We have $\left|A_{1}\right|=3=\left|A_{2}\right|$, $\left|A_{3}\right|=\binom{3}{2}\binom{3}{1}=9=\left|A_{4}\right|$ and $\left|A_{5}\right|=\binom{3}{2}\binom{2}{1}=6=\left|A_{6}\right|$. Hence, $|A|=36$ and it follows that

$$
\mathbb{P}(A)=\frac{36}{\frac{8!}{3!5!}}=\frac{36}{56}=\frac{9}{14}
$$

- Computing $\mathbb{P}\left(A^{c}\right)$ first:

Let K be the event $K=\{$ The balls are of the same color or of three different colors $\}$. The possible configurations for K are $3 R$ or $3 B$ (call the set of these K_{1}) or R, B and W (call it K_{2}). Then $\left|K_{1}\right|=2$ and $\left|K_{2}\right|=\binom{3}{1}\binom{3}{1}\binom{2}{1}=18$. Hence, $|K|=20$ and

$$
\mathbb{P}(A)=1-\frac{20}{56}=\frac{9}{14}
$$

4. Exercise

The goal of this exercise is to compute the expectation of some well-known discrete random variables.
(a) Let X be the random variable taking values in the set $\left\{x_{1}, \ldots, x_{k}\right\}$ with probability p_{1}, \ldots, p_{k}. Compute $\mathbb{E}[X]$. What is $\mathbb{E}[X]$ in the special case $x_{i}=i, k=6$ and $p_{i}=1 / 6$ for $i \in\{1, \ldots, 6\} ?$
(b) Let X be a Binomial random variable with parameters n and $p \in(0,1)$, that is $\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k \in\{0, \ldots, n\}$. Compute $\mathbb{E}[X]$.
(c) Let X be a Geometric random variable with parameter $p \in(0,1)$, that is $\mathbb{P}(X=k)=p(1-p)^{k}$, for $k \in\{0,1,2, \ldots\}$. Compute $\mathbb{E}[X]$.

Solution:

(a) By definition of the expectation, we have

$$
\mathbb{E}[X]=\sum_{x \in X(\Omega)} x p(x)=\sum_{i=1}^{k} x_{i} p_{i}=\frac{1}{6} \sum_{i=1}^{6} i=\frac{7}{2} .
$$

This is the average number when a fair die is thrown.
(b) The are at least two ways to compute the expectation of a Binomial random variable.

- $1^{\text {st }}$ method:

$$
\mathbb{E}[X]=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}
$$

and, for $k \geq 1$,

$$
k\binom{n}{k}=k \frac{n!}{k!(n-k)!}=\frac{n!}{(k-1)!(n-k)!}=n \frac{(n-1)!}{(k-1)!(n-k)!}=n\binom{n-1}{k-1} .
$$

Thus,

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=1}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}=n \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \\
& =n \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k+1}(1-p)^{n-1-k}=n p \sum_{k=0}^{n-1}\binom{n-1}{k} p^{k}(1-p)^{n-1-k} \\
& =n p \sum_{k=0}^{n-1}\binom{n-1}{k}\left(\frac{p}{1-p}\right)^{k}(1-p)^{n-1}=n p\left(1+\frac{p}{1-p}\right)^{n-1}(1-p)^{n-1} \\
& =n p .
\end{aligned}
$$

- $2^{\text {nd }}$ method:

A Binomial random variable is by definition the sum of n (independent) Bernoulli random variables with parameter p, that is $X=X_{1}+\ldots X_{n}$ with $X_{1}, \ldots, X_{n} \in\{0,1\}$ and $\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p$ for $1 \leq i \leq n$, and X_{1}, \ldots, X_{n} are independent (a notion which we will study in more detail). Then, $\mathbb{E}[X]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]$ and $\mathbb{E}\left[X_{i}\right]=1 p+0(1-p)=p$. Hence, $\mathbb{E}[X]=n p$.
(c) A Geometric random variable is considered to model the waiting time for some specific event to occur (e.g. the arrival of a customer in a shop). Such event is known to arrive with probability p. If the waiting time is k, this means that the event did not occur in the first k trials before it occured in the next trial (e.g. no customer arrived in the first k minutes after the shop opened but in the $k+1^{s t}$). This explains $\mathbb{P}(X=k)=p(1-p)^{k}$ (one success and k failures). We have

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k \geq 0} k p(1-p)^{k}=p(1-p) \sum_{k=1}^{\infty} k(1-p)^{k-1} \\
& =p(1-p)\left[-\frac{d}{d p} \sum_{k=0}^{\infty}(1-p)^{k}\right]=p(1-p)\left[-\frac{d}{d p} \frac{1}{1-(1-p)}\right] \\
& =p(1-p) \frac{1}{p^{2}}=\frac{1-p}{p}=\frac{1}{p}-1
\end{aligned}
$$

5. Exercise

(a) Let X be a random variable such that $X(\Omega)=\{1 / k: k=1,2, \ldots\}$ and $\mathbb{P}(X=1 / k)=2^{-k}$. Compute $\mathbb{E}[X]$.
(b) Let X be a random variable such that $X(\Omega)=\{1 / k: k=1,2, \ldots\} \cup\{k: k=2,3, \ldots\}$ and $\mathbb{P}(X=1 / k)=$ $2^{-(k+1)}$ for $k \geq 1$ and $\mathbb{P}(X=k)=2^{-k}$ for $k \geq 2$. Compute $\mathbb{E}[X]$.

Solution:

(a) Using the Taylor series expansion $\log (1-x)=-\sum_{k=1}^{\infty} \frac{1}{k} x^{k}$ for any $x \in(-1,1)$,

$$
\mathbb{E}[X]=\sum_{k=1}^{\infty} \frac{1}{k} 2^{-k}=-\log \left(1-\frac{1}{2}\right)=\log (2)
$$

(b) First, we check that the probabilities sum to 1 .

$$
\begin{aligned}
\sum_{k=1}^{\infty} \mathbb{P}(X=1 / k)+\sum_{k=2}^{\infty} \mathbb{P}(X=k) & =\sum_{k=1}^{\infty} 2^{-(k+1)}+\sum_{k=2}^{\infty} 2^{-k}=\sum_{k=2}^{\infty} 2^{-k}+\sum_{k=2}^{\infty} 2^{-k} \\
& =2 \sum_{k=2}^{\infty} 2^{-k}=\sum_{k=2}^{\infty} 2^{-(k-1)}=\sum_{k=1}^{\infty} 2^{-k}=\frac{1}{1-\frac{1}{2}}-1=1
\end{aligned}
$$

Then,

$$
\begin{aligned}
\mathbb{E}[X] & =\sum_{k=1}^{\infty} \frac{1}{k} 2^{-(k+1)}+\sum_{k=2}^{\infty} k 2^{-k}=\frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} 2^{-k}+\frac{1}{2} \sum_{k=2}^{\infty} k 2^{-(k-1)} \\
& =\frac{1}{2} \log (2)+\frac{1}{2}\left(\sum_{k=1}^{\infty} k 2^{-(k-1)}-1\right)=\frac{1}{2} \log (2)+\frac{1}{2}\left(-\left.\frac{d}{d x} \sum_{k=0}^{\infty} x^{k}\right|_{x=1 / 2}-1\right) \\
& =\frac{1}{2} \log (2)+\frac{1}{2}\left(\frac{1}{\left(1-\frac{1}{2}\right)^{2}}-1\right)=\frac{3+\log (2)}{2} .
\end{aligned}
$$

