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1. Exercise

In a building with four floors, an elevator starts with three people at the ground floor.

(a) What is the probability that these people get off at exactly two different floors?

(b) Let X be the number of people who got off at the first floor. Compute E[X].

(c) LetX be as before and Y be the number of people who got off at the second floor. Compute P(X = 1|Y = 1).

Solution:

(a) To compute the probability of the event E = {The three people get off at exactly two different floors},
we need to count first all the possibilities, that is |Ω|. Here, we have |Ω| = 43 = 64 because each of
the three people has four possibilities (four possible floors to get off at). Since it seems reasonable (in
the absence of any additional information) to assume that all possibilities have the same probability,
we have that P(E) = |E|/|Ω| = |E|/64. To compute |E|, note first that there are

(
4
2

)
pairs of floors

at which people can get off ({1, 2}, {1, 3}, . . . , {3, 4}). Now, fix a pair, for example {1, 2}. There are
2
(
3
1

)
= 2
(
3
2

)
= 6 ways of splitting the three people in two groups such that each one of the groups gets

off at floor 1 or 2. This means that |E| = 6
(
4
2

)
= 6 4!

2!2! = 36. Thus, P(E) = 36/64 = 9/16.

(b) To compute E[X], we first note that X takes values in the set {0, 1, 2, 3}. Hence,

E[X] =

3∑
i=0

iP(X = i) =

3∑
i=1

iP(X = i).

We need to compute P(X = i) for i ∈ {1, 2, 3}. For i = 1, |{X = 1}| is equal to 3 (the number of people)
times the number of possibilities for the remaining two people to get off at other floors. Since each of
the two remaining people has three other floors to get off at, we get P(X = 1) = 3 · 32/|Ω| = 27/64.
For i = 2, we count the number of groups of two out of three people that can get off at the first
floor and the number of possibilities for the one remaining person. Thus, |{X = 2}| =

(
3
2

)
· 3 = 9

and P(X = 2) = 9/|Ω| = 9/64. For i = 3, all three persons have to get off at the first floor, so
|{X = 3}| = 1 and P(X = 3) = 1/64.

Remark: Consistency check: P(X = 0) = P(all three persons get off at floor 2, 3 or 4) = 33/|Ω| =
27/64 = 1− P(X = 1)− P(X = 2)− P(X = 3).

It follows that

E[X] =

3∑
i=1

iP(X = i) =
1 · 27 + 2 · 9 + 3 · 1

64
=

48

64
=

3

4
.

Remark: Here is a very simple way of obtaining E[X] = 3/4. Since the floors play similar roles, the
(random) number of people getting off at some floor should have the same distribution for all floors.
Hence, they should all have the same expectation. Thus, if we denote by Y , Z and W the number of
people getting of the second, third, respectively fourth floor, then E[X] = E[Y ] = E[Z] = E[W ] and
4E[X] = E[X + Y + Z +W ] = 3, so E[X] = 3/4.

(c) We have

P(X = 1|Y = 1) =
P(X = 1, Y = 1)

P(Y = 1)
.

By the previous remark, P(Y = 1) = P(X = 1) = 27/64. To count |{X = 1, Y = 1}|, we note that
there are

(
3
2

)
different groups of two people A,B; then we multiply with 2 to account for the possibility

that either A gets off at the first and B at the second floor or A gets off at the second and B at the first
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floor; lastly, we multiply with 2 to account for the two different possibilities where the third person
gets off (third or forth floor). Thus, |{X = 1, Y = 1}| =

(
3
2

)
· 2 · 2 = 12 and P(X = 1|Y = 1) = 12/27.

2. Exercise

We have a box which contains three different coins. Each one of the coins has a different probability to show
“H” (heads) after it is tossed. Call these probabilities pj , j ∈ {1, 2, 3}. We are given p1 = 1/4, p2 = 1/2 and
p3 = 3/4.

(a) We select a coin from the box completely at random. When this coin is tossed, it shows “H”. What is the
conditional probability that the coin number j was the one selected?

(b) The same coin is tossed again. What is the conditional probability of obtaining “H” again?

Remark: The term “conditional” relates to the event {The coin shows “H” in the first toss}.
(c) Show the following result: Let A1, . . . , Ak be a partition of Ω and let B,C be two events such that P(B∩C) >

0 and P(Ai ∩B) > 0 for every i ∈ {1, . . . , k}. Then,

P(Aj |B ∩ C) =
P(Aj |B)P(C|Aj ∩B)∑k
i=1 P(Ai|B)P(C|Ai ∩B)

.

(d) If the same coin shows “H” again at the second toss, what is the conditional probability that the coin
number j was selected?

Solution:

Let us denote Aj = {Coin number j was selected} and H1 = {We obtain “H” at the first toss} and
H2 = {We obtain “H” at the second toss}.

(a) We have

P(Aj |H1) =
P(Aj ∩H1)

P(H1)
=

P(H1|Aj)P(Aj)

P(H1)
=

P(H1|Aj)P(Aj)∑3
i=1 P(H1|Ai)P(Ai)

.

With P(Ai) = 1/3 for i = 1, 2, 3 and P(H1|Aj) = pj ,

P(Aj |H1) =
pj

1
3∑3

i=1 pi
1
3

=
pj

1
4 + 1

2 + 3
4

=
2

3
pj =


1/6 if j = 1,

1/3 if j = 2,

1/2 if j = 3.

(b) We want to compute P(H2|H1).

P(H2|H1) =
P(H2 ∩H1)

P(H1)
=

∑3
i=1 P(H1 ∩H2|Ai)P(Ai)∑3

i=1 P(H1|Ai)P(Ai)

=

∑3
i=1 P(H1|Ai)P(H2|Ai)

1
3∑3

i=1 P(H1|Ai)
1
3

=

∑3
i=1 p

2
i∑3

i=1 pi
=

1
16 + 1

4 + 9
16

1
4 + 1

2 + 3
4

=
14/16

3/2
=

7

12
,

where from the first to the second line we used that the two coin tosses are independent of each other.

(c) We have that

P(Aj |B ∩ C) =
P(Aj ∩B ∩ C)

P(B ∩ C)

with
P(Aj ∩B ∩ C) = P(C|Aj ∩B)P(Aj ∩B) = P(C|Aj ∩B)P(Aj |B)P(B)
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and

P(B ∩ C) =

k∑
i=1

P(Ai ∩B ∩ C) =

k∑
i=1

P(C|Ai ∩B)P(Ai ∩B) =

k∑
i=1

P(C|Ai ∩B)P(Ai|B)P(B).

Note that P(B) ≥ P(B ∩ C) > 0. It follows that

P(Aj |B ∩ C) =
P(Aj |B)P(C|Aj ∩B)∑k
i=1 P(Ai|B)P(C|Ai ∩B)

.

(d) Here, we want to compute P(Aj |H1 ∩H2). Using the expression from question (c), we can write

P(Aj |H1 ∩H2) =
P(Aj |H1)P(H2|Aj ∩H1)∑3
i=1 P(Ai|H1)P(H2|Ai ∩H1)

,

where P(Aj |H1) =
2
3pj was already calculated in question (a) and P(H2|Aj ∩H1) = P(H2|Aj) = pj ,

because the first coin toss being “H” does not alter the probability of getting “H” again in the second
toss. Thus,

P(Aj |H1 ∩H2) =
2
3p

2
j∑3

i=1
2
3p

2
i

=
8

7
p2j =


1/14 if j = 1,

2/7 if j = 2,

9/14 if j = 3.

3. Exercise

LetX and Y be random variables such thatX and Y are independent and for some λ, µ > 0 we have P(X = k) =
1
k!e

−λλk and P(Y = k) = 1
k!e

−µµk for k ∈ {0, 1, 2, . . . }. (This means that X and Y have Possion distribution
with rate λ and µ, respectively.)

(a) For k ∈ {0, 1, 2, . . . }, compute P(X + Y = k). Do you recognize the distribution of X + Y ?

(b) Consider the event {X = i|X + Y = n} for some fixed n ∈ {0, 1, 2, . . . } and i ∈ {0, . . . , n}. Compute
the probability of this event. What do you conclude about the conditional distribution of X given that
X + Y = n?

(c) Deduce E[X|X + Y ].

Solution:

(a) Let k ∈ {0, 1, 2, . . . }. We have that {X + Y = k} =
⋃k

i=0{X = i, Y = k − i}. Then P(X + Y =

k) =
∑k

i=0 P(X = i, Y = k − i) since {X = i, Y = k − i} ∩ {X = j, Y = k − j} = ∅ for i ̸= j. Using
independence of X and Y , it follows that

P(X + Y = k) =

k∑
i=0

P(X = i)P(Y = k − i) =

k∑
i=0

e−λλi

i!

e−µµk−i

(k − i)!

=
e−λ−µ

k!

k∑
i=0

(
k

i

)
λiµk−i =

e−λ−µ

k!
(λ+ µ)k.

This means that X + Y has a Poisson distribution with parameter λ+ µ.
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(b) We compute for i = 0, . . . , n

P(X = i|X + Y = n) =
P(X = i,X + Y = n)

P(X + Y = n)
=

P(X = i, Y = n− i)

P(X + Y = n)

=
P(X = i)P(Y = n− i)

P(X + Y = n)
=

e−λλi

i!

e−µµn−i

(n− i)!

n!

e−λ−µ(λ+ µ)n

=
λiµn−i

(λ+ µ)n
n!

i!(n− i)!
=

(
n

i

)(
λ

λ+ µ

)i(
1− λ

λ+ µ

)n−i

.

This means that, conditionally on {X + Y = n}, the distribution of X is Binomial with parameters n
and λ

λ+µ .

(c) To compute E[X|X + Y ], we use the fact that

E[X|X + Y ] =
∑
n≥0

E[X|X + Y = n]1X+Y=n.

According to (b), we have that E[X|X + Y = n] = n λ
λ+µ (using the fact that the expectation of a

Binomial random variable with parameters n and p is np). Thus,

E[X|X + Y ] =
∑
n≥0

n
λ

λ+ µ
1X+Y=n =

λ

λ+ µ
(X + Y ).

4. Exercise

Let X be a random variable on (Ω,A,P) such that E[X2] < ∞. Also, let B = (Bi)i∈I be a partition of Ω. By
definition, we know that

E[X|B] =
∑
i∈I :

P(Bi)>0

E[X|Bi]1Bi

with E[X|Bi] =
E[X1Bi

]

P(Bi)
if P(Bi) > 0. Show that

E
[
(X − E[X|B])2

]
= min

(ci)i∈I :∑
i∈I c2iP(Bi)<∞

E


X −

∑
i : P(Bi)>0

ci1Bi

2
 .

Solution:

Denote c̃i =
E[X1Bi

]

P(Bi)
for i ∈ I with P(Bi) > 0 so that E[X|B] =

∑
i∈I : P(Bi)>0 c̃i1Bi . We claim that∑

i : P(Bi)>0 c̃
2
iP(Bi) < ∞. Indeed, we have 1Bi

= 1Bi
1Bi

and, hence, by the Cauchy-Schwarz inequality,

c̃2iP(Bi) =
E[X1Bi

1Bi
]2

P(Bi)
≤

E[X2
1
2
Bi
]E[12

Bi
]

P(Bi)
=

E[X2
1Bi

]E[1Bi
]

P(Bi)
= E[X2

1Bi
].

Thus, ∑
i : P(Bi)>0

c̃2iP(Bi) =
∑

i : P(Bi)>0

E[X2
1Bi

] = E[X2] < ∞.

Now, let (ci)i∈I be any collection of real numbers such that
∑

i∈I c
2
iP(Bi) < ∞. For simplicity of notation,

FS 2023 4



Probability and Statistics
D-MATH

Prof. Dr. F. Balabdaoui

we assume from now on that P(Bi) > 0 for all i ∈ I. We compute

E

(X −
∑
i∈I

ci1Bi

)2
 = E

(X − E[X|B] + E[X|B]−
∑
i∈I

ci1Bi

)2


= E
[
(X − E[X|B])2

]
+ 2E

[
(X − E[X|B])

(
E[X|B]−

∑
i∈I

ci1Bi

)]

+ E

(E[X|B]−
∑
i∈I

ci1Bi

)2
 .

Note that
E[X|B]−

∑
i∈I

ci1Bi =
∑
i∈I

(c̃i − ci)1Bi .

Now, we show for any (di)i∈I with
∑

i∈I d
2
iP(Bi) < ∞ that

E

[
(X − E[X|B])

∑
i∈I

di1Bi

]
= 0.

We have

E[X|B]
∑
i∈I

di1Bi =

(∑
i∈I

c̃1Bi

)(∑
i∈I

di1Bi

)
=
∑
i,j∈I

c̃idj1Bi1Bj =
∑
i∈I

c̃idi1Bi

since 1Bi1Bj = 0 for i ̸= j and, hence,

E

[
(X − E[X|B])

∑
i∈I

di1Bi

]
= E

[∑
i∈I

diX1Bi − E[X|B]
∑
i∈I

di1Bi

]
=
∑
i∈I

diE[X1Bi
]−
∑
i∈I

c̃idiP(Bi) = 0

since c̃iP(Bi) = E[X1Bi
]. With di = c̃i − ci, it follows that

E

(X −
∑
i∈I

ci1Bi

)2
 = E

[
(X − E[X|B])2

]
+ E

(E[X|B]−
∑
i∈I

ci1Bi

)2


≥ E
[
(X − E[X|B])2

]
,

which shows that the minimum of the expectation of the quadratic error (X −
∑

ci1Bi
)2 is attained for

ci = c̃i, that is when
∑

ci1Bi
= E[X|B].
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