Sheet 4

Due: To be handed in before 24.03.2023 at 12:00.

1. Exercise

Let $\left(S_{k}\right)_{0 \leq k \leq N}$ be a random walk with N steps for some integer $N \geq 1$. More precisely, $S_{0}=0$ and $S_{k}=\sum_{i=1}^{k} X_{i}$ for $1 \leq k \leq N$, where $\left(X_{1}, \ldots, X_{N}\right) \in \Omega=\left\{\omega=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{-1,1\}, 1 \leq i \leq N\right\}=\{-1,1\}^{N}$, which is equipped with the (discrete) uniform distribution, i.e. $\mathbb{P}(\{\omega\})=2^{-N}$ for all $\omega \in \Omega$. For this exercise, we recall Stirling's formula for large n :

$$
n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}
$$

(a) Write down $\mathbb{P}\left(S_{2 n}=0\right)$ and $\mathbb{P}\left(S_{2 n-1}=1\right)$ using the formula from the lecture or script. Show that these probabilities are equal.
(b) For n large, show that $\mathbb{P}\left(S_{2 n}=0\right) \sim 1 / \sqrt{\pi n}$.
(c) Conclude that, for n large enough, $\mathbb{P}\left(S_{n}=0\right) \sim 1 / \sqrt{\pi n / 2}$ if n is even and that the same holds for $\mathbb{P}\left(S_{n}= \pm 1\right)$ if n is odd.

2. Exercise

The goal of this question is to show, for $a>0, b \geq-a$ and $1 \leq n \leq N$, that

$$
\mathbb{P}\left(T_{-a} \leq n, S_{n}=b\right)=\mathbb{P}\left(S_{n}=-2 a-b\right)
$$

where we recall that $T_{c}=\min \left\{k \in\{1, \ldots, N\}: S_{k}=c\right\}$ (with the convention $T_{c}=N+1$ if the set is empty). For $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \Omega=\{-1,1\}^{N}$, we recall that the realization of a random walk with N steps for this ω is $\left(S_{k}(\omega)\right)_{0 \leq k \leq N}$, where $S_{0}=0, S_{k}(\omega)=\sum_{i=1}^{k} X_{i}(\omega)$ and $X_{i}(\omega)=\omega_{i}$. Consider the events $E_{1}=\left\{\omega \in \Omega: T_{-a}(\omega) \leq n, S_{n}(\omega)=b\right\}$ and $E_{2}=\left\{\omega \in \Omega: S_{n}(\omega)=-2 a-b\right\}$. Consider also the application $\phi: E_{1} \rightarrow E_{2}, \omega \mapsto \omega^{\prime}=\phi(\omega)$ defined as

$$
\omega_{i}^{\prime}= \begin{cases}\omega_{i} & \text { if } i \leq T_{-a}(\omega), \\ -\omega_{i} & \text { if } i>T_{-a}(\omega) .\end{cases}
$$

(a) Show that we have indeed $\phi\left(E_{1}\right) \subseteq E_{2}$.
(b) Show that if $S_{k}=x$ for some $k \in\{1, \ldots, N\}$ and $x>0$, then each value in $\{1, \ldots, x-1\}$ must have been reached by the random walk before time k.
(c) Show that ϕ is a bijection from E_{1} onto E_{2}.
(d) Conclude that $\mathbb{P}\left(T_{-a} \leq n, S_{n}=b\right)=\mathbb{P}\left(S_{n}=-2 a-b\right)$.

3. Exercise

In this exercise, we want to show the identity $\mathbb{P}\left(T_{0}>2 n\right)=\mathbb{P}\left(S_{2 n}=0\right)(\star)$. To this end, we will start by showing that $\mathbb{P}\left(T_{0} \leq 2 n\right)=\mathbb{P}\left(T_{-1} \leq 2 n-1\right)$.
(a) Show that T_{0} is necessarily an even integer and T_{-1} is necessarily an odd integer.
(b) Consider the events

$$
\begin{aligned}
& E_{-1}=\left\{\text { there is an even integer } k \in\{2, \ldots, 2 n\} \text { such that } S_{k-1}=-1 \text { and } X_{k}=1\right\}, \\
& E_{+1}=\left\{\text { there is an even integer } k \in\{2, \ldots, 2 n\} \text { such that } S_{k-1}=1 \text { and } X_{k}=-1\right\}
\end{aligned}
$$

and show that $\mathbb{P}\left(T_{0} \leq 2 n\right)=\mathbb{P}\left(E_{-1}\right)+\mathbb{P}\left(E_{+1}\right)-\mathbb{P}\left(E_{-1} \cap E_{+1}\right)=\mathbb{P}\left(T_{-1} \leq 2 n-1\right)$.
Hint: Use symmetry of the distribution of a random walk.
(c) Using the result $\mathbb{P}\left(T_{-a} \leq n\right)=\mathbb{P}\left(S_{n} \notin(-a, a]\right)$ for $a>0$, show the identity (\star).

4. Exercise

(a) Use your favorite software to generate 100 (or more) independent random walks $\left(S_{k}\right)_{0 \leq k \leq N}$ with $N=500$. Hint: It may be useful to note that a random variable X with $\mathbb{P}(X= \pm 1)=1 / 2$ has the same distribution as 2 Bernoulli($1 / 2$)-1.
(b) Let (as in the lecture) $L=\max \left\{0 \leq k \leq 2 N: S_{k}=0\right\}$ denote the last time the random walk $\left(S_{k}\right)_{0 \leq k \leq 2 N}$ visited 0 . Check the arcsin law, that is that the density of the random variable $Z_{N}=L /(2 N)=L / 1000$ is close to $z \mapsto 1 /(\pi \sqrt{z(1-z)})$.
Hint: You can draw the histogram of the realizations of Z_{N} along with the plot of $z \mapsto 1 /(\pi \sqrt{z(1-z)})$.

