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1. Exercise

Let (Sk)o<k<n be arandom walk with N steps for some integer N > 1. More precisely, Sy = 0 and Si, = Zle X
for 1 <k < N, where (X1,...,Xy) € Q={w= (21,...,2,): 7, € {-1,1}, 1 <i < N} = {-1,1}", which is
equipped with the (discrete) uniform distribution, i.e. P({w}) = 27 for all w € Q. For this exercise, we recall
Stirling’s formula for large n:
nl ~ (E)n 2mn.
e

(a) Write down P(S3, = 0) and P(Ss,_1 = 1) using the formula from the lecture or script. Show that these
probabilities are equal.

(b) For n large, show that P(Ss, = 0) ~ 1/y/mn.

(c¢) Conclude that, for n large enough, P(S,, = 0) ~ 1/4/7n/2 if n is even and that the same holds for
P(S,, = £1) if n is odd.

Solution:

(a) We have, for any integers n > 1, k € {0,...,n}, that P(S, =2k —n) = (})27™. Thus, P(Ss, = 0) =
(27?)2’2" and P(Sap,—1 = 1) = (Q"n_l)Q’(Q”’l). To show that these probabilities are equal, we note

that
2n —1 1 @2n-1)! 2 (2n) 1  [2n) 1
n 92n—1 nl(n — 1)!27” T oplpl 220 T\ p ) 220"

(b) By Stirling’s formula, for large n,

(o) ()" Vamn 2
(n)> () omy VAR

which yields P(S2, = 0) ~ 1/y/mn.
(c) Let n = 2m with m large enough. Then,
P(S, =0) =P(Sam, =0) ~ 1/y/mm = 1/y/7n/2.
If n = 2m — 1 with m large, then, by symmetry of the distribution of S,

P(S, = 1) =P(5, = 1) =P(S2m-1 = 1) = P(S2;, = 0) ~ 1/\/7% ~ 1/\/7T/27

where the latter apprximation holds for large n since lim,,_, "T“ =1.

2. Exercise
The goal of this question is to show, for a > 0, b > —a and 1 < n < N, that
P(T_, <n, S, =0b)=P(S, = —2a—10),

where we recall that T, = min{k € {1,...,N}: Sy = ¢} (with the convention T, = N + 1 if the set is
empty). For w = (wy,...,wny) € © = {=1,1}, we recall that the realization of a random walk with N

steps for this w is (Sk(w))o<k<n, where Sp = 0, Sk(w) = Zle X;(w) and X;(w) = w;. Consider the events
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Ei={weQ: T 4(w) <n, Sp(w) =>b} and Ey = {w € Q: S,(w) = —2a — b}. Consider also the application
¢: By = F2, w— w' = ¢(w) defined as

w/ o Wws if 4 S T,a(W),
) —ws i > T (w).
(a) Show that we have indeed ¢(E;) C Es.

(b) Show that if S = = for some k € {1,..., N} and = > 0, then each value in {1,...,2 — 1} must have been
reached by the random walk before time k.

(c) Show that ¢ is a bijection from E; onto Es.
(d) Conclude that P(T_, < n, S, =b) =P(S, = —2a — b).

Solution:

(a) It is clear that w] € {—1,1} for any w € E1, i € {1,...,N}. We need to show that S, (w') = > w] =
—2a—b. We distinguish two cases. First, if T_,(w) = n, then w’ = w by definition of w’ and S, (w) = —a
by definition of T_,. Since w € Ej, this implies S, (w') = —a = S, (w) = b. Thus, this case can only

occur when b = —a, in which case S, (w') = —a = —2a — b. Hence, w’ € Es. Secondly, if T_,(w) < n,
then
n T—a(w) n T_a(w) n
Su@)=D wi= D, wit > wi= ) wi- D w
i=1 i=1 i=T_o(w)+1 i=1 i=T_q(w)+1
T_q(w) n T_o(w) T_o(w) n
=3 (T X ) =2 3w Y
i=1 i=1 i=1 i=1 i=1

=257 ()W) = Sn(w) = —2a —b.

Hence, w’ € E5 and we conclude that ¢(F) C Fs.

(b) We want to show that, for x > 0 and n € {1,...,N}, if S, = z, then for all y € {0,...,x — 1} there
exists j € {0,...,n—1} such that S; = y. We will show this using induction on n. For n = 1, we have
S1 = iff Xy =2 iff X3 =1 =z since x > 0. The property holds obviously in this case since Sy = 0.

Suppose it is true for n and let us show it for n + 1. Thus, suppose S, +1 = «. If z = 1, then there is
nothing to show since Sy = 0. Suppose that x > 2. We have either S,, = x+1 or S,, = x—1. Call these
cases A and B. For A, we have by the inductive hypothesis on n that for all y € {0, ..., 2z} there exists
j €{0,...,n—1} such that S; =y, implying that for all y € {0,...,z — 1} there exists j € {0,...,n}
such that S; = y, and the property is true for n+4 1. For B, we have again by the inductive hypothesis
on n that for all y € {0,...,x — 2} there exists j € {0,...,n — 1} such that S; = y. This together
with the fact that S,, = x — 1 gives that for all y € {0, ...,z — 1} there exists j € {0,...,n} such that
S; =y, which completes the proof.

(c) We show that ¢ is injective: Let w and @ such that ¢(w) = ¢(®) = w’. Then

{wi if i < T o(w), } B {w if i < T o (@),

~

VT e i Toaw) [ | —@ ifi > Ta(@).
Suppose that T_,(w) # T_q(@) and without loss of generality that T_,(w) < T_4(®). Then, for all
ie{l,...,T_4(w)}, w} = w; = &;. Hence,

T_o(w) T_o(w)

Z ‘bi = Z w; = ST,a(w)(w) = —a.
i=1 i=1

But this is impossible because T_,(w) < T_o(@) and T_,(@) is the smallest integer k € {1,...,N}
such that Zle @ = —a. Thus, we must have T_,(w) = T_,(©). This, in turn, implies that w; = @;
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forall 1 <i<T_,(w) and —w; = —&; for all i > T_,(w). Hence, w = @ and ¢ is injective since w and

w were chosen arbitrarily from Fj.
We show that ¢ is surjective: Let w’ € Fy. We will exhibit w € E; such that w’ = ¢(w). We have that

w’):ngz—Za—b:—a—(a—&—b)g—
i=1

since b > —a. If b = —a, then S, (W) = —a, so T_4(w') < n by definition of T_,. If b > —a,
then S, (w') < —a — 1. By question (b) and a symmetry argument, we know that each value in
{Sn(W') + 1, S, () + 7...,O} has been reached by the random walk (Si(w’))o<k<ny at a point < n.
Since —a € {S,(w') +1,...,0}, we conclude that T_,(w’) < n in this case. Hence, we always have
that T_o(w') < n. Let w = (wl, ...,wn) be the vector given by

wi o i < T (W),
W; =
—wi it i >T_,(W).

Then, ZlT‘f(w,) w; = T:‘f(w/) wl = —a and, hence, T_,(w) < T_,(w'). H T_4(w) < T_4(w’), then we
would have ET’“(W = —a, which contradicts the definition of T, (w’). Thus, T_,(w) = T—4(W').
Hence, T_,(w) < n.

We will now show that S, (w) =b. If n =T_,(w), then

n T,a(w)
w) = Zwi = Z =—a
i=1 i=1

but also .
S = 2
i=1

which means that b = —a. In this case, S, (w) =b. If n > T_,(w), then

T_o(w) n T_a(w) n
Z w;i + Z w; = Z W — Z w;
i=1 i=T_ 4 (w)+1 i=1 i=T_q(w)+1

=2 Z wj —Zw —2a — (—2a — b) =b.

It follows that w € E; and it is clear that w’ = ¢(w). This concludes the proof of surjectivity.

(d) We have P(T_, < n, S, = b) = P(Fy) and P(S,, = —2a — b) = P(E;). But P(E;) = |E1|/|€?| and
P(E;) = |E2|/|Q|, where P is the uniform probability measure on 2. By question (c), we have that
|E1| = | F2| and the claimed equality follows.

3. Exercise

In this exercise, we want to show the identity P(Ty > 2n) = P(Ss, = 0) (x). To this end, we will start by
showing that P(Tp < 2n) = P(T_; < 2n —1).

(a) Show that Ty is necessarily an even integer and T, is necessarily an odd integer.
(b) Cousider the events

E_; = {there is an even integer k € {2,...,2n} such that S,_; = —1 and X}, = 1},
E., = {there is an even integer k € {2,...,2n} such that Sy_; =1 and X, = —1}

and show that P(To S 27’1) = P(E_l) + IP(E+1) — P(E_l n E+1) = P(T_l S 2n — 1)

FS 2023 3



m Probability and Statistics

Eidgendssische Technische Hochschule Ziirich D-MATH
Swiss Federal Institute of Technology Zurich Prof. Dr. F. Balabdaoui

Hint: Use symmetry of the distribution of a random walk.
(¢) Using the result P(T_, < n) =P(S, ¢ (—a,a]) for a > 0, show the identity ().

Solution:

(a) Let k =T, € N\{0}. Then S;, = 0. Also,

Thus, Sk = 0 is equivalent to 2 Zle 1x,—1 = k, which shows that k = T has to be even.
Similarly, let k= T_; € N\{0}. Then 23% Ty, =k —1,50 T_; — 1 is even, i.c. T, is odd.
(b) Now, consider the event Ey = {Ty < 2n}. Then, by definition of Ty and using (a), we have that

Eoy={3ke{2,4,...,2n}: S, =0} =FE_; UE,,.
Then, P(Ey) =P(E_1) + P(E;+1) —P(E_1 N E41). By symmetry, we have that
P(E 1) =P(3k e {2,4,...,2n}: Sg—1 = —1 and X} = —1)
as well as
P(E_1NEL)=P3k #ke €{2,4,...,2n}: Spy—1=—-1, Xi, =1, Sg,—1 = -1, X, = —1).
Thus,

P(Ey) =P(3k € {2,4,...,2n}: Sp1 = —1, X = 1) + PGk € {2,4,...,2n}: Sp_1 = —1, X = —1)
—P@ky £ ks €{2,4,...,2n}: Sp,_1 = —1, Xp, =1, Spy1 = —1, Xp, = —1)
—P{3ke{24,....2n}: Sp1 = —1L, Xy =1} U3k e {2.4,....2n}: Sp_1 = —1, X}, = —1})
=PEke{2,4,...,2n}: Sp_1 =—1) =P(@m e {1,3,...,2n—1}: S,, = —1)
= P(T_, <2n—1).

(c) We have
B(T_y > 20 — 1) = B(San_1 € (~1,1)) = B(Spao1 € {0,1}) = P(San_1 = 1)

because P(S2,—1 = 0) = 0. Using exercise 1(a), we conclude that P(Ty > 2n) = P(S2, = 0).

4. Exercise

(a) Use your favorite software to generate 100 (or more) independent random walks (Sg)o<k<n Wwith N = 500.

Hint: It may be useful to note that a random variable X with P(X = +1) = 1/2 has the same distribution
as 2Bernoulli(1/2)—1.

(b) Let (as in the lecture) L = max{0 < k < 2N: Sj, = 0} denote the last time the random walk (Sk)o<r<an
visited 0. Check the arcsin law, that is that the density of the random variable Zy = L/(2N) = L/1000 is
close to z — 1/(my/2(1 — 2)).

Hint: You can draw the histogram of the realizations of Zx along with the plot of z — 1/(m/2(1 — 2)).

Solution:
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Histogram of L/1000

See the code below for an example in the program-
ming language R. The resulting histrogram and the
plot of z — 1/(74/2(1 — 2)) are shown to the right. ~ A

0.0 0.2 0.4 0.6 0.8 1.0

L/1000

AR function which generates a random walk with 2N steps
SimFunRandWalk = function (N){

Bern.vec = rbinom(n = 2«N, size =1, prob=1/2) #generate i.i.d. Bernoulli(1/2)

X.vec = 2xBern.vec — 1 #generate i.i.d. Rademacher rvs (taking —1 or 1 with
pb =1/2)
S = ¢(0,cumsum(X.vec)) # gives the random walk with 2N steps. Note that 0 is
added
# at the beginning so that the length of S is 2N +1
return (S)

}

L ) : : : : ” ”
HHH A A A function which determines the last time a vector vec

takes the value 0
LFun = function (vec){

index0 = which(vec==0) — 1 # substracting 1 is necessary because we vec[l]=0
while this corresponds to S_0

L = max(index0)
return (L)

imulating M realizations from the same

distribution of IH#HHHH

Lout = NULL

M =5000
for (i in 1:M){
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S.i = SimFunRandWalk (N=500)
Lout = c¢(Lout, LFun(S.1i))

}

N N N N R I NIRRT Computlng Z — L/lOOO

T A A A A AT

Zout = Lout/(1000)

UL ) ) 3 4 4
T A i s The hlStOgram Of Z a’long Wlth the denSIty Of the

arsinus law

hist (Zout, nclass=40, prob=T, xlab="L/1000”, ylab="", main="Histogram of L
/1000”)

points (sort (Zout), (1/pi)*1/(sqrt(sort(Zout)*(l—sort(Zout)))), col="blue”, type
=717, lwd=2.5)
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