Sheet 4

Due: To be handed in before 24.03.2023 at 12:00.

1. Exercise

Let $\left(S_{k}\right)_{0 \leq k \leq N}$ be a random walk with N steps for some integer $N \geq 1$. More precisely, $S_{0}=0$ and $S_{k}=\sum_{i=1}^{k} X_{i}$ for $1 \leq k \leq N$, where $\left(X_{1}, \ldots, X_{N}\right) \in \Omega=\left\{\omega=\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{-1,1\}, 1 \leq i \leq N\right\}=\{-1,1\}^{N}$, which is equipped with the (discrete) uniform distribution, i.e. $\mathbb{P}(\{\omega\})=2^{-N}$ for all $\omega \in \Omega$. For this exercise, we recall Stirling's formula for large n :

$$
n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}
$$

(a) Write down $\mathbb{P}\left(S_{2 n}=0\right)$ and $\mathbb{P}\left(S_{2 n-1}=1\right)$ using the formula from the lecture or script. Show that these probabilities are equal.
(b) For n large, show that $\mathbb{P}\left(S_{2 n}=0\right) \sim 1 / \sqrt{\pi n}$.
(c) Conclude that, for n large enough, $\mathbb{P}\left(S_{n}=0\right) \sim 1 / \sqrt{\pi n / 2}$ if n is even and that the same holds for $\mathbb{P}\left(S_{n}= \pm 1\right)$ if n is odd.

Solution:

(a) We have, for any integers $n \geq 1, k \in\{0, \ldots, n\}$, that $\mathbb{P}\left(S_{n}=2 k-n\right)=\binom{n}{k} 2^{-n}$. Thus, $\mathbb{P}\left(S_{2 n}=0\right)=$ $\binom{2 n}{n} 2^{-2 n}$ and $\mathbb{P}\left(S_{2 n-1}=1\right)=\binom{2 n-1}{n} 2^{-(2 n-1)}$. To show that these probabilities are equal, we note that

$$
\binom{2 n-1}{n} \frac{1}{2^{2 n-1}}=\frac{(2 n-1)!}{n!(n-1)!} \frac{2}{2^{2 n}}=\frac{(2 n)!}{n!n!} \frac{1}{2^{2 n}}=\binom{2 n}{n} \frac{1}{2^{2 n}} .
$$

(b) By Stirling's formula, for large n,

$$
\frac{(2 n)!}{(n!)^{2}} \sim \frac{\left(\frac{2 n}{e}\right)^{2 n} \sqrt{4 \pi n}}{\left(\frac{n}{e}\right)^{2 n} 2 \pi n}=\frac{2^{2 n}}{\sqrt{\pi n}},
$$

which yields $\mathbb{P}\left(S_{2 n}=0\right) \sim 1 / \sqrt{\pi n}$.
(c) Let $n=2 m$ with m large enough. Then,

$$
\mathbb{P}\left(S_{n}=0\right)=\mathbb{P}\left(S_{2 m}=0\right) \sim 1 / \sqrt{\pi m}=1 / \sqrt{\pi n / 2}
$$

If $n=2 m-1$ with m large, then, by symmetry of the distribution of S_{n},

$$
\mathbb{P}\left(S_{n}=-1\right)=\mathbb{P}\left(S_{n}=1\right)=\mathbb{P}\left(S_{2 m-1}=1\right)=\mathbb{P}\left(S_{2 m}=0\right) \sim 1 / \sqrt{\pi m} \sim 1 / \sqrt{\pi n / 2},
$$

where the latter apprximation holds for large n since $\lim _{n \rightarrow \frac{n+1}{n}}=1$.

2. Exercise

The goal of this question is to show, for $a>0, b \geq-a$ and $1 \leq n \leq N$, that

$$
\mathbb{P}\left(T_{-a} \leq n, S_{n}=b\right)=\mathbb{P}\left(S_{n}=-2 a-b\right)
$$

where we recall that $T_{c}=\min \left\{k \in\{1, \ldots, N\}: S_{k}=c\right\}$ (with the convention $T_{c}=N+1$ if the set is empty). For $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right) \in \Omega=\{-1,1\}^{N}$, we recall that the realization of a random walk with N steps for this ω is $\left(S_{k}(\omega)\right)_{0 \leq k \leq N}$, where $S_{0}=0, S_{k}(\omega)=\sum_{i=1}^{k} X_{i}(\omega)$ and $X_{i}(\omega)=\omega_{i}$. Consider the events
$E_{1}=\left\{\omega \in \Omega: T_{-a}(\omega) \leq n, S_{n}(\omega)=b\right\}$ and $E_{2}=\left\{\omega \in \Omega: S_{n}(\omega)=-2 a-b\right\}$. Consider also the application $\phi: E_{1} \rightarrow E_{2}, \omega \mapsto \omega^{\prime}=\phi(\omega)$ defined as

$$
\omega_{i}^{\prime}= \begin{cases}\omega_{i} & \text { if } i \leq T_{-a}(\omega) \\ -\omega_{i} & \text { if } i>T_{-a}(\omega)\end{cases}
$$

(a) Show that we have indeed $\phi\left(E_{1}\right) \subseteq E_{2}$.
(b) Show that if $S_{k}=x$ for some $k \in\{1, \ldots, N\}$ and $x>0$, then each value in $\{1, \ldots, x-1\}$ must have been reached by the random walk before time k.
(c) Show that ϕ is a bijection from E_{1} onto E_{2}.
(d) Conclude that $\mathbb{P}\left(T_{-a} \leq n, S_{n}=b\right)=\mathbb{P}\left(S_{n}=-2 a-b\right)$.

Solution:

(a) It is clear that $\omega_{i}^{\prime} \in\{-1,1\}$ for any $\omega \in E_{1}, i \in\{1, \ldots, N\}$. We need to show that $S_{n}\left(\omega^{\prime}\right)=\sum_{i=1}^{n} \omega_{i}^{\prime}=$ $-2 a-b$. We distinguish two cases. First, if $T_{-a}(\omega)=n$, then $\omega^{\prime}=\omega$ by definition of ω^{\prime} and $S_{n}(\omega)=-a$ by definition of T_{-a}. Since $\omega \in E_{1}$, this implies $S_{n}\left(\omega^{\prime}\right)=-a=S_{n}(\omega)=b$. Thus, this case can only occur when $b=-a$, in which case $S_{n}\left(\omega^{\prime}\right)=-a=-2 a-b$. Hence, $\omega^{\prime} \in E_{2}$. Secondly, if $T_{-a}(\omega)<n$, then

$$
\begin{aligned}
S_{n}\left(\omega^{\prime}\right)=\sum_{i=1}^{n} \omega_{i}^{\prime} & =\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}^{\prime}+\sum_{i=T_{-a}(\omega)+1}^{n} \omega_{i}^{\prime}=\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}^{\prime}-\sum_{i=T_{-a}(\omega)+1}^{n} \omega_{i} \\
& =\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}^{\prime}-\left(\sum_{i=1}^{n} \omega_{i}-\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}\right)=2 \sum_{i=1}^{T_{-a}(\omega)} \omega_{i}-\sum_{i=1}^{n} \omega_{i} \\
& =2 S_{T_{-a}(\omega)}(\omega)-S_{n}(\omega)=-2 a-b .
\end{aligned}
$$

Hence, $\omega^{\prime} \in E_{2}$ and we conclude that $\phi\left(E_{1}\right) \subseteq E_{2}$.
(b) We want to show that, for $x>0$ and $n \in\{1, \ldots, N\}$, if $S_{n}=x$, then for all $y \in\{0, \ldots, x-1\}$ there exists $j \in\{0, \ldots, n-1\}$ such that $S_{j}=y$. We will show this using induction on n. For $n=1$, we have $S_{1}=x$ iff $X_{1}=x$ iff $X_{1}=1=x$ since $x>0$. The property holds obviously in this case since $S_{0}=0$.
Suppose it is true for n and let us show it for $n+1$. Thus, suppose $S_{n+1}=x$. If $x=1$, then there is nothing to show since $S_{0}=0$. Suppose that $x \geq 2$. We have either $S_{n}=x+1$ or $S_{n}=x-1$. Call these cases A and B. For A, we have by the inductive hypothesis on n that for all $y \in\{0, \ldots, x\}$ there exists $j \in\{0, \ldots, n-1\}$ such that $S_{j}=y$, implying that for all $y \in\{0, \ldots, x-1\}$ there exists $j \in\{0, \ldots, n\}$ such that $S_{j}=y$, and the property is true for $n+1$. For B, we have again by the inductive hypothesis on n that for all $y \in\{0, \ldots, x-2\}$ there exists $j \in\{0, \ldots, n-1\}$ such that $S_{j}=y$. This together with the fact that $S_{n}=x-1$ gives that for all $y \in\{0, \ldots, x-1\}$ there exists $j \in\{0, \ldots, n\}$ such that $S_{j}=y$, which completes the proof.
(c) We show that ϕ is injective: Let ω and $\tilde{\omega}$ such that $\phi(\omega)=\phi(\tilde{\omega})=\omega^{\prime}$. Then

$$
\omega_{i}^{\prime}=\left\{\begin{array}{ll}
\omega_{i} & \text { if } i \leq T_{-a}(\omega), \\
-\omega_{i} & \text { if } i>T_{-a}(\omega)
\end{array}\right\}= \begin{cases}\tilde{\omega}_{i} & \text { if } i \leq T_{-a}(\tilde{\omega}) \\
-\tilde{\omega}_{i} & \text { if } i>T_{-a}(\tilde{\omega})\end{cases}
$$

Suppose that $T_{-a}(\omega) \neq T_{-a}(\tilde{\omega})$ and without loss of generality that $T_{-a}(\omega)<T_{-a}(\tilde{\omega})$. Then, for all $i \in\left\{1, \ldots, T_{-a}(\omega)\right\}, \omega_{i}^{\prime}=\omega_{i}=\tilde{\omega}_{i}$. Hence,

$$
\sum_{i=1}^{T_{-a}(\omega)} \tilde{\omega}_{i}=\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}=S_{T_{-a}(\omega)}(\omega)=-a .
$$

But this is impossible because $T_{-a}(\omega)<T_{-a}(\tilde{\omega})$ and $T_{-a}(\tilde{\omega})$ is the smallest integer $k \in\{1, \ldots, N\}$ such that $\sum_{i=1}^{k} \tilde{\omega}=-a$. Thus, we must have $T_{-a}(\omega)=T_{-a}(\tilde{\omega})$. This, in turn, implies that $\omega_{i}=\tilde{\omega}_{i}$
for all $1 \leq i \leq T_{-a}(\omega)$ and $-\omega_{i}=-\tilde{\omega}_{i}$ for all $i>T_{-a}(\omega)$. Hence, $\omega=\tilde{\omega}$ and ϕ is injective since ω and $\tilde{\omega}$ were chosen arbitrarily from E_{1}.

We show that ϕ is surjective: Let $\omega^{\prime} \in E_{2}$. We will exhibit $\omega \in E_{1}$ such that $\omega^{\prime}=\phi(\omega)$. We have that

$$
S_{n}\left(\omega^{\prime}\right)=\sum_{i=1}^{n} \omega_{i}^{\prime}=-2 a-b=-a-(a+b) \leq-a
$$

since $b \geq-a$. If $b=-a$, then $S_{n}\left(\omega^{\prime}\right)=-a$, so $T_{-a}\left(\omega^{\prime}\right) \leq n$ by definition of T_{-a}. If $b>-a$, then $S_{n}\left(\omega^{\prime}\right) \leq-a-1$. By question (b) and a symmetry argument, we know that each value in $\left\{S_{n}\left(\omega^{\prime}\right)+1, S_{n}\left(\omega^{\prime}\right)+2, \ldots, 0\right\}$ has been reached by the random walk $\left(S_{k}\left(\omega^{\prime}\right)\right)_{0 \leq k \leq N}$ at a point $<n$. Since $-a \in\left\{S_{n}\left(\omega^{\prime}\right)+1, \ldots, 0\right\}$, we conclude that $T_{-a}\left(\omega^{\prime}\right)<n$ in this case. Hence, we always have that $T_{-a}\left(\omega^{\prime}\right) \leq n$. Let $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right)$ be the vector given by

$$
\omega_{i}= \begin{cases}\omega_{i}^{\prime} & \text { if } i \leq T_{-a}\left(\omega^{\prime}\right) \\ -\omega_{i}^{\prime} & \text { if } i>T_{-a}\left(\omega^{\prime}\right)\end{cases}
$$

Then, $\sum_{i=1}^{T_{-a}\left(\omega^{\prime}\right)} \omega_{i}=\sum_{i=1}^{T_{-a}\left(\omega^{\prime}\right)} \omega_{i}^{\prime}=-a$ and, hence, $T_{-a}(\omega) \leq T_{-a}\left(\omega^{\prime}\right)$. If $T_{-a}(\omega)<T_{-a}\left(\omega^{\prime}\right)$, then we would have $\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}^{\prime}=-a$, which contradicts the definition of $T_{-a}\left(\omega^{\prime}\right)$. Thus, $T_{-a}(\omega)=T_{-a}\left(\omega^{\prime}\right)$. Hence, $T_{-a}(\omega) \leq n$.
We will now show that $S_{n}(\omega)=b$. If $n=T_{-a}(\omega)$, then

$$
S_{n}(\omega)=\sum_{i=1}^{n} \omega_{i}=\sum_{i=1}^{T_{-a}(\omega)}=-a
$$

but also

$$
S_{n}(\omega)=\sum_{i=1}^{n} \omega_{i}^{\prime}=S_{n}\left(\omega^{\prime}\right)=-2 a-b
$$

which means that $b=-a$. In this case, $S_{n}(\omega)=b$. If $n>T_{-a}(\omega)$, then

$$
\begin{aligned}
S_{n}(\omega) & =\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}+\sum_{i=T_{-a}(\omega)+1}^{n} \omega_{i}=\sum_{i=1}^{T_{-a}(\omega)} \omega_{i}^{\prime}-\sum_{i=T_{-a}(\omega)+1}^{n} \omega_{i}^{\prime} \\
& =2 \sum_{i=1}^{T_{-a}(\omega)} \omega_{i}^{\prime}-\sum_{i=1}^{n} \omega_{i}^{\prime}=-2 a-(-2 a-b)=b .
\end{aligned}
$$

It follows that $\omega \in E_{1}$ and it is clear that $\omega^{\prime}=\phi(\omega)$. This concludes the proof of surjectivity.
(d) We have $\mathbb{P}\left(T_{-a} \leq n, S_{n}=b\right)=\mathbb{P}\left(E_{1}\right)$ and $\mathbb{P}\left(S_{n}=-2 a-b\right)=\mathbb{P}\left(E_{2}\right)$. But $\mathbb{P}\left(E_{1}\right)=\left|E_{1}\right| /|\Omega|$ and $\mathbb{P}\left(E_{2}\right)=\left|E_{2}\right| /|\Omega|$, where \mathbb{P} is the uniform probability measure on Ω. By question (c), we have that $\left|E_{1}\right|=\left|E_{2}\right|$ and the claimed equality follows.

3. Exercise

In this exercise, we want to show the identity $\mathbb{P}\left(T_{0}>2 n\right)=\mathbb{P}\left(S_{2 n}=0\right)(\star)$. To this end, we will start by showing that $\mathbb{P}\left(T_{0} \leq 2 n\right)=\mathbb{P}\left(T_{-1} \leq 2 n-1\right)$.
(a) Show that T_{0} is necessarily an even integer and T_{-1} is necessarily an odd integer.
(b) Consider the events

$$
\begin{aligned}
& E_{-1}=\left\{\text { there is an even integer } k \in\{2, \ldots, 2 n\} \text { such that } S_{k-1}=-1 \text { and } X_{k}=1\right\}, \\
& E_{+1}=\left\{\text { there is an even integer } k \in\{2, \ldots, 2 n\} \text { such that } S_{k-1}=1 \text { and } X_{k}=-1\right\}
\end{aligned}
$$

and show that $\mathbb{P}\left(T_{0} \leq 2 n\right)=\mathbb{P}\left(E_{-1}\right)+\mathbb{P}\left(E_{+1}\right)-\mathbb{P}\left(E_{-1} \cap E_{+1}\right)=\mathbb{P}\left(T_{-1} \leq 2 n-1\right)$.

Hint: Use symmetry of the distribution of a random walk.
(c) Using the result $\mathbb{P}\left(T_{-a} \leq n\right)=\mathbb{P}\left(S_{n} \notin(-a, a]\right)$ for $a>0$, show the identity ($\left.\star\right)$.

Solution:

(a) Let $k=T_{0} \in \mathbb{N} \backslash\{0\}$. Then $S_{k}=0$. Also,

$$
S_{k}=\sum_{i=1}^{k} X_{i}=\sum_{i=1}^{k} \mathbb{1}_{X_{i}=1}+\sum_{i=1}^{k}(-1)\left(1-\mathbb{1}_{X_{i}=1}\right)=2 \sum_{i=1}^{k} \mathbb{1}_{X_{i}=1}-k
$$

Thus, $S_{k}=0$ is equivalent to $2 \sum_{i=1}^{k} \mathbb{1}_{X_{i}=1}=k$, which shows that $k=T_{0}$ has to be even.
Similarly, let $k=T_{-1} \in \mathbb{N} \backslash\{0\}$. Then $2 \sum_{i=1}^{k} \mathbb{1}_{X_{i}=1}=k-1$, so $T_{-1}-1$ is even, i.e. T_{-1} is odd.
(b) Now, consider the event $E_{0}=\left\{T_{0} \leq 2 n\right\}$. Then, by definition of T_{0} and using (a), we have that

$$
E_{0}=\left\{\exists k \in\{2,4, \ldots, 2 n\}: S_{k}=0\right\}=E_{-1} \cup E_{+1} .
$$

Then, $\mathbb{P}\left(E_{0}\right)=\mathbb{P}\left(E_{-1}\right)+\mathbb{P}\left(E_{+1}\right)-\mathbb{P}\left(E_{-1} \cap E_{+1}\right)$. By symmetry, we have that

$$
\mathbb{P}\left(E_{+1}\right)=\mathbb{P}\left(\exists k \in\{2,4, \ldots, 2 n\}: S_{k-1}=-1 \text { and } X_{k}=-1\right)
$$

as well as

$$
\mathbb{P}\left(E_{-1} \cap E_{+1}\right)=\mathbb{P}\left(\exists k_{1} \neq k_{2} \in\{2,4, \ldots, 2 n\}: S_{k_{1}-1}=-1, X_{k_{1}}=1, S_{k_{2}-1}=-1, X_{k_{2}}=-1\right)
$$

Thus,

$$
\begin{aligned}
\mathbb{P}\left(E_{0}\right)= & \mathbb{P}\left(\exists k \in\{2,4, \ldots, 2 n\}: S_{k-1}=-1, X_{k}=1\right)+\mathbb{P}\left(\exists k \in\{2,4, \ldots, 2 n\}: S_{k-1}=-1, X_{k}=-1\right) \\
& -\mathbb{P}\left(\exists k_{1} \neq k_{2} \in\{2,4, \ldots, 2 n\}: S_{k_{1}-1}=-1, X_{k_{1}}=1, S_{k_{2}-1}=-1, X_{k_{2}}=-1\right) \\
= & \mathbb{P}\left(\left\{\exists k \in\{2,4, \ldots, 2 n\}: S_{k-1}=-1, X_{k}=1\right\} \cup\left\{\exists k \in\{2,4, \ldots, 2 n\}: S_{k-1}=-1, X_{k}=-1\right\}\right) \\
= & \mathbb{P}\left(\exists k \in\{2,4, \ldots, 2 n\}: S_{k-1}=-1\right)=\mathbb{P}\left(\exists m \in\{1,3, \ldots, 2 n-1\}: S_{m}=-1\right) \\
= & P\left(T_{-1} \leq 2 n-1\right) .
\end{aligned}
$$

(c) We have

$$
\mathbb{P}\left(T_{-1}>2 n-1\right)=\mathbb{P}\left(S_{2 n-1} \in(-1,1]\right)=\mathbb{P}\left(S_{2 n-1} \in\{0,1\}\right)=\mathbb{P}\left(S_{2 n-1}=1\right)
$$

because $\mathbb{P}\left(S_{2 n-1}=0\right)=0$. Using exercise $1(\mathrm{a})$, we conclude that $\mathbb{P}\left(T_{0}>2 n\right)=\mathbb{P}\left(S_{2 n}=0\right)$.

4. Exercise

(a) Use your favorite software to generate 100 (or more) independent random walks $\left(S_{k}\right)_{0 \leq k \leq N}$ with $N=500$. Hint: It may be useful to note that a random variable X with $\mathbb{P}(X= \pm 1)=1 / 2$ has the same distribution as $2 \operatorname{Bernoulli}(1 / 2)-1$.
(b) Let (as in the lecture) $L=\max \left\{0 \leq k \leq 2 N: S_{k}=0\right\}$ denote the last time the random walk $\left(S_{k}\right)_{0 \leq k \leq 2 N}$ visited 0 . Check the arcsin law, that is that the density of the random variable $Z_{N}=L /(2 N)=L / 1000$ is close to $z \mapsto 1 /(\pi \sqrt{z(1-z)})$.
Hint: You can draw the histogram of the realizations of Z_{N} along with the plot of $z \mapsto 1 /(\pi \sqrt{z(1-z)})$.

Solution:

See the code below for an example in the programming language R . The resulting histrogram and the plot of $z \mapsto 1 /(\pi \sqrt{z(1-z)})$ are shown to the right.


```
###############A function which generates a random walk with 2N steps
SimFunRandWalk = function(N){
Bern.vec = rbinom(n = 2*N, size =1, prob=1/2) #generate i.i.d. Bernoulli(1/2)
X.vec = 2*Bern.vec - 1 #generate i.i.d. Rademacher rvs (taking -1 or 1 with
    pb =1/2)
S = c(0,cumsum(X.vec)) # gives the random walk with 2N steps. Note that 0 is
    added
                        # at the beginning so that the length of S is 2N +1
return(S)
}
############### A function which determines the last time a vector "vec"
    takes the value 0
LFun = function(vec){
index0 = which(vec==0) - 1 # substracting 1 is necessary because we vec[1]=0
    while this corresponds to S_0
L}=\operatorname{max}(\mathrm{ index0)
return(L)
}
#####################################Simulating M realizations from the same
    distribution of L######
Lout = NULL
M =5000
for(i in 1:M){
```

```
S.i = SimFunRandWalk (N=500)
Lout = c(Lout, LFun(S.i))
}
################################### Computing Z = L/1000
Zout = Lout/(1000)
############
        arsinus law
hist(Zout, nclass=40, prob=T, xlab="L/1000", ylab="", main="Histogram of L
    /1000")
points(sort(Zout), (1/ pi)*1/(sqrt(sort(Zout)*(1-sort(Zout)))), col="blue", type
    ="l", lwd=2.5)
```

