Sheet 4

Due: To be handed in before 24.03.2023 at 12:00.

1. Exercise

Let $(S_k)_{0 \le k \le N}$ be a random walk with N steps for some integer $N \ge 1$. More precisely, $S_0 = 0$ and $S_k = \sum_{i=1}^k X_i$ for $1 \le k \le N$, where $(X_1, \ldots, X_N) \in \Omega = \{\omega = (x_1, \ldots, x_n) : x_i \in \{-1, 1\}, 1 \le i \le N\} = \{-1, 1\}^N$, which is equipped with the (discrete) uniform distribution, i.e. $\mathbb{P}(\{\omega\}) = 2^{-N}$ for all $\omega \in \Omega$. For this exercise, we recall Stirling's formula for large n:

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

- (a) Write down $\mathbb{P}(S_{2n} = 0)$ and $\mathbb{P}(S_{2n-1} = 1)$ using the formula from the lecture or script. Show that these probabilities are equal.
- (b) For *n* large, show that $\mathbb{P}(S_{2n} = 0) \sim 1/\sqrt{\pi n}$.
- (c) Conclude that, for n large enough, $\mathbb{P}(S_n = 0) \sim 1/\sqrt{\pi n/2}$ if n is even and that the same holds for $\mathbb{P}(S_n = \pm 1)$ if *n* is odd.

Solution:

(a) We have, for any integers $n \ge 1$, $k \in \{0, \ldots, n\}$, that $\mathbb{P}(S_n = 2k - n) = \binom{n}{k} 2^{-n}$. Thus, $\mathbb{P}(S_{2n} = 0) = \binom{2n}{n} 2^{-2n}$ and $\mathbb{P}(S_{2n-1} = 1) = \binom{2n-1}{n} 2^{-(2n-1)}$. To show that these probabilities are equal, we note that (2n-1) 1 (2n-1)! 2 (2n)! 1 $\binom{2n}{n}\frac{1}{2^{2n}}.$

$$\binom{n}{2^{2n-1}} = \frac{1}{n!(n-1)!} \frac{1}{2^{2n}} = \frac{1}{n!n!} \frac{1}{2^{2n}} = \binom{n}{2^{2n}} \frac{1}{2^{2n}} = \binom{n}{2^{2n}} \frac{1}{2^{2n}} \frac{1}{2$$

(b) By Stirling's formula, for large n,

$$\frac{(2n)!}{(n!)^2} \sim \frac{\left(\frac{2n}{e}\right)^{2n} \sqrt{4\pi n}}{\left(\frac{n}{e}\right)^{2n} 2\pi n} = \frac{2^{2n}}{\sqrt{\pi n}}$$

which yields $\mathbb{P}(S_{2n}=0) \sim 1/\sqrt{\pi n}$.

(c) Let n = 2m with m large enough. Then,

$$\mathbb{P}(S_n = 0) = \mathbb{P}(S_{2m} = 0) \sim 1/\sqrt{\pi m} = 1/\sqrt{\pi n/2}.$$

If n = 2m - 1 with m large, then, by symmetry of the distribution of S_n ,

$$\mathbb{P}(S_n = -1) = \mathbb{P}(S_n = 1) = \mathbb{P}(S_{2m-1} = 1) = \mathbb{P}(S_{2m} = 0) \sim 1/\sqrt{\pi m} \sim 1/\sqrt{\pi n/2},$$

where the latter apprximation holds for large n since $\lim_{n\to} \frac{n+1}{n} = 1$.

2. Exercise

The goal of this question is to show, for a > 0, $b \ge -a$ and $1 \le n \le N$, that

$$\mathbb{P}(T_{-a} \le n, \ S_n = b) = \mathbb{P}(S_n = -2a - b),$$

where we recall that $T_c = \min\{k \in \{1, \ldots, N\}: S_k = c\}$ (with the convention $T_c = N + 1$ if the set is empty). For $\omega = (\omega_1, \ldots, \omega_N) \in \Omega = \{-1, 1\}^N$, we recall that the realization of a random walk with N steps for this ω is $(S_k(\omega))_{0 \le k \le N}$, where $S_0 = 0$, $S_k(\omega) = \sum_{i=1}^k X_i(\omega)$ and $X_i(\omega) = \omega_i$. Consider the events

 $E_1 = \{\omega \in \Omega : T_{-a}(\omega) \leq n, S_n(\omega) = b\}$ and $E_2 = \{\omega \in \Omega : S_n(\omega) = -2a - b\}$. Consider also the application $\phi : E_1 \to E_2, \omega \mapsto \omega' = \phi(\omega)$ defined as

$$\omega_i' = \begin{cases} \omega_i & \text{if } i \leq T_{-a}(\omega), \\ -\omega_i & \text{if } i > T_{-a}(\omega). \end{cases}$$

- (a) Show that we have indeed $\phi(E_1) \subseteq E_2$.
- (b) Show that if $S_k = x$ for some $k \in \{1, ..., N\}$ and x > 0, then each value in $\{1, ..., x 1\}$ must have been reached by the random walk before time k.
- (c) Show that ϕ is a bijection from E_1 onto E_2 .
- (d) Conclude that $\mathbb{P}(T_{-a} \leq n, S_n = b) = \mathbb{P}(S_n = -2a b).$

Solution:

(a) It is clear that $\omega'_i \in \{-1, 1\}$ for any $\omega \in E_1$, $i \in \{1, \dots, N\}$. We need to show that $S_n(\omega') = \sum_{i=1}^n \omega'_i = -2a-b$. We distinguish two cases. First, if $T_{-a}(\omega) = n$, then $\omega' = \omega$ by definition of ω' and $S_n(\omega) = -a$ by definition of T_{-a} . Since $\omega \in E_1$, this implies $S_n(\omega') = -a = S_n(\omega) = b$. Thus, this case can only occur when b = -a, in which case $S_n(\omega') = -a = -2a - b$. Hence, $\omega' \in E_2$. Secondly, if $T_{-a}(\omega) < n$, then

$$S_{n}(\omega') = \sum_{i=1}^{n} \omega'_{i} = \sum_{i=1}^{T_{-a}(\omega)} \omega'_{i} + \sum_{i=T_{-a}(\omega)+1}^{n} \omega'_{i} = \sum_{i=1}^{T_{-a}(\omega)} \omega'_{i} - \sum_{i=T_{-a}(\omega)+1}^{n} \omega_{i}$$
$$= \sum_{i=1}^{T_{-a}(\omega)} \omega'_{i} - \left(\sum_{i=1}^{n} \omega_{i} - \sum_{i=1}^{T_{-a}(\omega)} \omega_{i}\right) = 2 \sum_{i=1}^{T_{-a}(\omega)} \omega_{i} - \sum_{i=1}^{n} \omega_{i}$$
$$= 2S_{T_{-a}(\omega)}(\omega) - S_{n}(\omega) = -2a - b.$$

Hence, $\omega' \in E_2$ and we conclude that $\phi(E_1) \subseteq E_2$.

- (b) We want to show that, for x > 0 and $n \in \{1, \ldots, N\}$, if $S_n = x$, then for all $y \in \{0, \ldots, x 1\}$ there exists $j \in \{0, \ldots, n 1\}$ such that $S_j = y$. We will show this using induction on n. For n = 1, we have $S_1 = x$ iff $X_1 = x$ iff $X_1 = 1 = x$ since x > 0. The property holds obviously in this case since $S_0 = 0$. Suppose it is true for n and let us show it for n + 1. Thus, suppose $S_{n+1} = x$. If x = 1, then there is nothing to show since $S_0 = 0$. Suppose that $x \ge 2$. We have either $S_n = x + 1$ or $S_n = x - 1$. Call these cases A and B. For A, we have by the inductive hypothesis on n that for all $y \in \{0, \ldots, x\}$ there exists $j \in \{0, \ldots, n - 1\}$ such that $S_j = y$, implying that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n - 1\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, n - 1\}$ such that $S_j = y$. This together with the fact that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = x - 1$ gives that for all $y \in \{0, \ldots, x - 1\}$ there exists $j \in \{0, \ldots, n\}$ such that $S_n = y$, which completes the proof.
- (c) We show that ϕ is injective: Let ω and $\tilde{\omega}$ such that $\phi(\omega) = \phi(\tilde{\omega}) = \omega'$. Then

$$\omega_i' = \begin{cases} \omega_i & \text{if } i \le T_{-a}(\omega), \\ -\omega_i & \text{if } i > T_{-a}(\omega) \end{cases} = \begin{cases} \tilde{\omega}_i & \text{if } i \le T_{-a}(\tilde{\omega}), \\ -\tilde{\omega}_i & \text{if } i > T_{-a}(\tilde{\omega}). \end{cases}$$

Suppose that $T_{-a}(\omega) \neq T_{-a}(\tilde{\omega})$ and without loss of generality that $T_{-a}(\omega) < T_{-a}(\tilde{\omega})$. Then, for all $i \in \{1, \ldots, T_{-a}(\omega)\}, \omega'_i = \omega_i = \tilde{\omega}_i$. Hence,

$$\sum_{i=1}^{T_{-a}(\omega)} \tilde{\omega}_i = \sum_{i=1}^{T_{-a}(\omega)} \omega_i = S_{T_{-a}(\omega)}(\omega) = -a.$$

But this is impossible because $T_{-a}(\omega) < T_{-a}(\tilde{\omega})$ and $T_{-a}(\tilde{\omega})$ is the smallest integer $k \in \{1, \ldots, N\}$ such that $\sum_{i=1}^{k} \tilde{\omega} = -a$. Thus, we must have $T_{-a}(\omega) = T_{-a}(\tilde{\omega})$. This, in turn, implies that $\omega_i = \tilde{\omega}_i$ for all $1 \leq i \leq T_{-a}(\omega)$ and $-\omega_i = -\tilde{\omega}_i$ for all $i > T_{-a}(\omega)$. Hence, $\omega = \tilde{\omega}$ and ϕ is injective since ω and $\tilde{\omega}$ were chosen arbitrarily from E_1 .

We show that ϕ is surjective: Let $\omega' \in E_2$. We will exhibit $\omega \in E_1$ such that $\omega' = \phi(\omega)$. We have that

$$S_n(\omega') = \sum_{i=1}^n \omega'_i = -2a - b = -a - (a+b) \le -a$$

since $b \geq -a$. If b = -a, then $S_n(\omega') = -a$, so $T_{-a}(\omega') \leq n$ by definition of T_{-a} . If b > -a, then $S_n(\omega') \leq -a - 1$. By question (b) and a symmetry argument, we know that each value in $\{S_n(\omega') + 1, S_n(\omega') + 2, \ldots, 0\}$ has been reached by the random walk $(S_k(\omega'))_{0 \leq k \leq N}$ at a point < n. Since $-a \in \{S_n(\omega') + 1, \ldots, 0\}$, we conclude that $T_{-a}(\omega') < n$ in this case. Hence, we always have that $T_{-a}(\omega') \leq n$. Let $\omega = (\omega_1, \ldots, \omega_N)$ be the vector given by

$$\omega_i = \begin{cases} \omega'_i & \text{if } i \leq T_{-a}(\omega'), \\ -\omega'_i & \text{if } i > T_{-a}(\omega'). \end{cases}$$

Then, $\sum_{i=1}^{T_{-a}(\omega')} \omega_i = \sum_{i=1}^{T_{-a}(\omega')} \omega'_i = -a$ and, hence, $T_{-a}(\omega) \leq T_{-a}(\omega')$. If $T_{-a}(\omega) < T_{-a}(\omega')$, then we would have $\sum_{i=1}^{T_{-a}(\omega)} \omega'_i = -a$, which contradicts the definition of $T_{-a}(\omega')$. Thus, $T_{-a}(\omega) = T_{-a}(\omega')$. Hence, $T_{-a}(\omega) \leq n$.

We will now show that $S_n(\omega) = b$. If $n = T_{-a}(\omega)$, then

$$S_n(\omega) = \sum_{i=1}^n \omega_i = \sum_{i=1}^{T_{-a}(\omega)} = -a$$

but also

$$S_n(\omega) = \sum_{i=1}^n \omega'_i = S_n(\omega') = -2a - b,$$

which means that b = -a. In this case, $S_n(\omega) = b$. If $n > T_{-a}(\omega)$, then

$$S_n(\omega) = \sum_{i=1}^{T_{-a}(\omega)} \omega_i + \sum_{i=T_{-a}(\omega)+1}^n \omega_i = \sum_{i=1}^{T_{-a}(\omega)} \omega'_i - \sum_{i=T_{-a}(\omega)+1}^n \omega'_i$$
$$= 2\sum_{i=1}^{T_{-a}(\omega)} \omega'_i - \sum_{i=1}^n \omega'_i = -2a - (-2a - b) = b.$$

It follows that $\omega \in E_1$ and it is clear that $\omega' = \phi(\omega)$. This concludes the proof of surjectivity.

(d) We have $\mathbb{P}(T_{-a} \leq n, S_n = b) = \mathbb{P}(E_1)$ and $\mathbb{P}(S_n = -2a - b) = \mathbb{P}(E_2)$. But $\mathbb{P}(E_1) = |E_1|/|\Omega|$ and $\mathbb{P}(E_2) = |E_2|/|\Omega|$, where \mathbb{P} is the uniform probability measure on Ω . By question (c), we have that $|E_1| = |E_2|$ and the claimed equality follows.

3. Exercise

In this exercise, we want to show the identity $\mathbb{P}(T_0 > 2n) = \mathbb{P}(S_{2n} = 0)$ (*). To this end, we will start by showing that $\mathbb{P}(T_0 \le 2n) = \mathbb{P}(T_{-1} \le 2n - 1)$.

(a) Show that T_0 is necessarily an even integer and T_{-1} is necessarily an odd integer.

(b) Consider the events

 $E_{-1} = \{ \text{there is an even integer } k \in \{2, \dots, 2n\} \text{ such that } S_{k-1} = -1 \text{ and } X_k = 1 \},$ $E_{+1} = \{ \text{there is an even integer } k \in \{2, \dots, 2n\} \text{ such that } S_{k-1} = 1 \text{ and } X_k = -1 \}$

and show that $\mathbb{P}(T_0 \leq 2n) = \mathbb{P}(E_{-1}) + \mathbb{P}(E_{+1}) - \mathbb{P}(E_{-1} \cap E_{+1}) = \mathbb{P}(T_{-1} \leq 2n - 1).$

Hint: Use symmetry of the distribution of a random walk.

(c) Using the result $\mathbb{P}(T_{-a} \leq n) = \mathbb{P}(S_n \notin (-a, a])$ for a > 0, show the identity (\star) .

Solution:

(a) Let $k = T_0 \in \mathbb{N} \setminus \{0\}$. Then $S_k = 0$. Also, $S_k = \sum_{i=1}^k X_i = \sum_{i=1}^k \mathbb{1}_{X_i=1} + \sum_{i=1}^k (-1)(1 - \mathbb{1}_{X_i=1}) = 2\sum_{i=1}^k \mathbb{1}_{X_i=1} - k.$ Thus, $S_k = 0$ is equivalent to $2\sum_{i=1}^k \mathbb{1}_{X_i=1} = k$, which shows that $k = T_0$ has to be even. Similarly, let $k = T_{-1} \in \mathbb{N} \setminus \{0\}$. Then $2 \sum_{i=1}^{k} \mathbb{1}_{X_i=1} = k - 1$, so $T_{-1} - 1$ is even, i.e. T_{-1} is odd. (b) Now, consider the event $E_0 = \{T_0 \leq 2n\}$. Then, by definition of T_0 and using (a), we have that $E_0 = \{ \exists k \in \{2, 4, \dots, 2n\} : S_k = 0 \} = E_{-1} \cup E_{+1}.$ Then, $\mathbb{P}(E_0) = \mathbb{P}(E_{-1}) + \mathbb{P}(E_{+1}) - \mathbb{P}(E_{-1} \cap E_{+1})$. By symmetry, we have that $\mathbb{P}(E_{+1}) = \mathbb{P}(\exists k \in \{2, 4, \dots, 2n\}: S_{k-1} = -1 \text{ and } X_k = -1)$ as well as $\mathbb{P}(E_{-1} \cap E_{+1}) = \mathbb{P}(\exists k_1 \neq k_2 \in \{2, 4, \dots, 2n\}: S_{k_1-1} = -1, X_{k_1} = 1, S_{k_2-1} = -1, X_{k_2} = -1).$ Thus. $\mathbb{P}(E_0) = \mathbb{P}(\exists k \in \{2, 4, \dots, 2n\}: S_{k-1} = -1, X_k = 1) + \mathbb{P}(\exists k \in \{2, 4, \dots, 2n\}: S_{k-1} = -1, X_k = -1)$ $-\mathbb{P}(\exists k_1 \neq k_2 \in \{2, 4, \dots, 2n\}: S_{k_1-1} = -1, X_{k_1} = 1, S_{k_2-1} = -1, X_{k_2} = -1)$ $= \mathbb{P}(\{\exists k \in \{2, 4, \dots, 2n\}: S_{k-1} = -1, X_k = 1\} \cup \{\exists k \in \{2, 4, \dots, 2n\}: S_{k-1} = -1, X_k = -1\})$ $= \mathbb{P}(\exists k \in \{2, 4, \dots, 2n\}: S_{k-1} = -1) = \mathbb{P}(\exists m \in \{1, 3, \dots, 2n-1\}: S_m = -1)$ $= P(T_{-1} < 2n - 1).$ (c) We have $\mathbb{P}(T_{-1} > 2n - 1) = \mathbb{P}(S_{2n-1} \in (-1, 1]) = \mathbb{P}(S_{2n-1} \in \{0, 1\}) = \mathbb{P}(S_{2n-1} = 1)$ because $\mathbb{P}(S_{2n-1}=0)=0$. Using exercise 1(a), we conclude that $\mathbb{P}(T_0>2n)=\mathbb{P}(S_{2n}=0)$.

4. Exercise

- (a) Use your favorite software to generate 100 (or more) independent random walks $(S_k)_{0 \le k \le N}$ with N = 500. <u>Hint:</u> It may be useful to note that a random variable X with $\mathbb{P}(X = \pm 1) = 1/2$ has the same distribution as 2Bernoulli(1/2)-1.
- (b) Let (as in the lecture) $L = \max\{0 \le k \le 2N : S_k = 0\}$ denote the last time the random walk $(S_k)_{0 \le k \le 2N}$ visited 0. Check the arcsin law, that is that the density of the random variable $Z_N = L/(2N) = L/1000$ is close to $z \mapsto 1/(\pi\sqrt{z(1-z)})$.

<u>Hint:</u> You can draw the histogram of the realizations of Z_N along with the plot of $z \mapsto 1/(\pi \sqrt{z(1-z)})$.

Solution:


```
SimFunRandWalk = function(N) \{
Bern.vec = rbinom (n = 2*N, size =1, prob=1/2) #generate i.i.d. Bernoulli(1/2)
X.vec = 2*Bern.vec - 1 #generate i.i.d. Rademacher rvs (taking -1 or 1 with
  pb = 1/2)
S = c(0, cumsum(X, vec)) # gives the random walk with 2N steps. Note that 0 is
  added
                 \# at the beginning so that the length of S is 2N +1
return(S)
}
takes the value 0
LFun = function (vec) {
index0 = which(vec==0) - 1 \# substracting 1 is necessary because we vec[1]=0
  while this corresponds to S_{-0}
L = max(index0)
return(L)
}
Lout = NULL
M = 5000
for (i in 1:M) {
```

S.i = SimFunRandWalk(N=500)
Lout = c(Lout, LFun(S.i))
}