Sheet 5

Due: To be handed in before 07.04.2023 at 12:00.

1. Exercise

Consider the nonnegative function $f(x)=c x^{-k} \mathbb{1}_{x \geq 1}$ with $c>0$.
(a) For what value of k is f a density function? Find the corresponding cdf and compute $\mathbb{P}(2 \leq X \leq 3)$, where $X \sim f$.
(b) Give an example of a density function f such that $c \sqrt{f}$ cannot be a density function for any $c \in(0, \infty)$.

Solution:

(a) f is a density if and only if $x \mapsto x^{-k} \mathbb{1}_{x \geq 1}$ is integrable, that is $\int_{1}^{\infty} x^{-k} d x<\infty$. It is known that this is the case if and only if $k>1$. In this case,

$$
\int_{1}^{\infty} x^{-k} d x=\left.\frac{1}{-k+1} x^{-k+1}\right|_{1} ^{\infty}=\frac{1}{k-1}
$$

and, hence, $c=k-1$ for $k \in(1, \infty)$. We have for all $x \in \mathbb{R}$ that

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\left\{\begin{array}{ll}
0 & \text { if } x<1, \\
\int_{1}^{x} \frac{k-1}{t^{k}} d t & \text { if } x \geq 1
\end{array}=\left\{\begin{array}{ll}
0 & \text { if } x<1, \\
1-x^{-k+1} & \text { if } x \geq 1
\end{array}=\left(1-\frac{1}{x^{k-1}}\right) \mathbb{1}_{x \geq 1}\right.\right.
$$

Now, by continuity, $\mathbb{P}(X<2)=\mathbb{P}(X \leq 2)$ and, hence,

$$
\mathbb{P}(2 \leq X \leq 3)=\mathbb{P}(X \leq 3)-\mathbb{P}(X<2)=F(3)-F(2)=\frac{1}{2^{k-1}}-\frac{1}{3^{k-1}}
$$

(b) Take $k=2$. Then $f(x)=x^{-2} \mathbb{1}_{x \geq 1}$ is a density function but $x \mapsto c x^{-1} \mathbb{1}_{x \geq 1}$ is not for any $c \in(0, \infty)$.

2. Exercise

Let $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ for some $\mu \in \mathbb{R}$ and $\sigma \in(0, \infty)$.
(a) Give the density of X and show that $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
(b) Let Φ be the cdf of $Z \sim \mathcal{N}(0,1)$. Express the following probabilities in terms of μ, σ and $\Phi: \mathbb{P}(X \leq 0)$, $\mathbb{P}(|X-\mu| \leq 2 \sigma)$ and $\mathbb{P}(X>3 \mu)$.
(c) In this question, we assume that $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and $Z \sim \mathcal{N}(0,1)$ are defined on the same probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Now, we toss a coin that shows heads with probability $p \in(0,1)$. We assume that the outcome of the toss is independent of X and Z. Define the random variable

$$
Y= \begin{cases}X & \text { if the coin shows heads } \\ Z & \text { if the coin shows tails }\end{cases}
$$

What are the cdf and pdf of Y ? Do you know what such a distribution is called?

Solution:

(a) We know that $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ if and only if $X=\mu+\sigma Z$ with $Z \sim \mathcal{N}(0,1)$. Then, $X=g(Z)$ with $g(z)=\mu+\sigma z, z \in \mathbb{R}$. Since g is bijective from \mathbb{R} onto \mathbb{R} and $g \in C^{1}(\mathbb{R})$ with $g^{\prime}(z)=\sigma>0$ for all
$z \in \mathbb{R}$, it follows that

$$
f_{X}(x)=\frac{1}{\sigma} f_{Z}\left(g^{-1}(x)\right)=\frac{1}{\sigma} f_{Z}\left(\frac{x-\mu}{\sigma}\right)
$$

where $f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$ is the density of Z. Thus,

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

To show that $\mathbb{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$, we can use $X=\mu+\sigma Z$, which implies $\mathbb{E}[X]=\mu+\sigma \mathbb{E}[Z]=\mu$ since $\mathbb{E}[Z]=0$. The latter holds because in

$$
\mathbb{E}[Z]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z e^{-z^{2} / 2} d z
$$

we are integrating the odd function $z e^{-z^{2} / 2}$ over the symmetric domain \mathbb{R}. Also, $\operatorname{Var}(X)=\operatorname{Var}(\mu+$ $\sigma Z)=\sigma^{2} \operatorname{Var}(Z)$ and

$$
\operatorname{Var}(Z)=\mathbb{E}\left[Z^{2}\right]=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} z^{2} e^{-z^{2} / 2} d z=\frac{1}{\sqrt{2 \pi}}\left(-\left.z e^{-z^{2} / 2}\right|_{-\infty} ^{\infty}+\int_{-\infty}^{\infty} e^{-z^{2} / 2} d z\right)=1
$$

(b) We have

$$
\mathbb{P}(X \leq 0)=\mathbb{P}(\mu+\sigma Z \leq 0)=\mathbb{P}(Z \leq-\mu / \sigma)=\Phi(-\mu / \sigma)=1-\Phi(\mu / \sigma)
$$

and

$$
\begin{aligned}
\mathbb{P}(|X-\mu| \leq 2 \sigma) & =\mathbb{P}(|Z| \leq 2)=\mathbb{P}(-2 \leq Z \leq 2)=\mathbb{P}(Z \leq 2)-\mathbb{P}(Z<-2) \\
& =\Phi(2)-\Phi(-2)=\Phi(2)-(1-\Phi(2))=2 \Phi(2)-1
\end{aligned}
$$

and

$$
\mathbb{P}(X>3 \mu)=\mathbb{P}(X-\mu>2 \mu)=\mathbb{P}(Z>2 \mu / \sigma)=1-\mathbb{P}(Z \leq 2 \mu / \sigma)=1-\Phi(2 \mu / \sigma)
$$

(c) For any $y \in \mathbb{R}$, we have

$$
\begin{aligned}
F_{Y}(y)=\mathbb{P}(Y \leq y) & =\mathbb{P}(Y \leq y, \text { coin shows } H)+\mathbb{P}(Y \leq y, \text { coin shows } T) \\
& =\mathbb{P}(X \leq y, \text { coin shows } H)+\mathbb{P}(Z \leq y, \text { coin shows } T) \\
& =\mathbb{P}(X \leq y) p+\mathbb{P}(Z \leq y)(1-p) \\
& =p F_{X}(y)+(1-p) \Phi(y) \\
& =p \Phi\left(\frac{y-\mu}{\sigma}\right)+(1-p) \Phi(y),
\end{aligned}
$$

where we used that $F_{X}(y)=\mathbb{P}(\mu+\sigma Z \leq y)=\mathbb{P}(Z \leq(y-\mu) / \sigma)$. Hence, the density of Y is

$$
f_{Y}(y)=p \frac{1}{\sigma} \phi\left(\frac{y-\mu}{\sigma}\right)+(1-p) \phi(y)
$$

where $\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, z \in \mathbb{R}$. We can view this as a mixture density with two components and mixing probability p.

3. Exercise

(a) Let $X \sim \mathcal{U}([0,1])$. Compute the cdf, the α-quantile for $\alpha \in(0,1), \mathbb{E}\left[X^{n}\right]$ and $\mathbb{E}\left[X^{1 / n}\right]$ for all $n \geq 1$.
(b) Let $X \sim \operatorname{Beta}(\alpha, \beta)$ with $\alpha, \beta>0$. This means that X is absolutely continuous with density

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1} \mathbb{1}_{x \in(0,1)},
$$

where $\Gamma(a)=\int_{0}^{\infty} t^{a-1} e^{-t} d t$ for $a \in(0, \infty)$ is the Gamma function. Compute $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.
Hint: Note that $\int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}$ for any $\alpha, \beta>0$ and that $\Gamma(a+1)=a \Gamma(a)$ for any $a>0$.
(c) Let $X \sim \operatorname{Exp}(\lambda)$ with $\lambda \in(0, \infty)$, i.e. X has density $f(x)=\lambda e^{-\lambda x} \mathbb{1}_{x>0}$. Compute the cdf, the α-quantile for $\alpha \in(0,1)$ and $\mathbb{E}\left[X^{n}\right]$ for all $n \geq 1$.
Hint: use the normalizing constant in the density of a Gamma distribution.
(d) Let $X \sim \operatorname{Gamma}(\alpha, \beta)$ with $\alpha, \beta>0$, i.e. X has density

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} \mathbb{1}_{x>0} .
$$

Compute $\mathbb{E}[X]$ and $\operatorname{Var}(X)$.

Solution:

(a) X admits the density $f_{X}(x)=\mathbb{1}_{[0,1]}(x)$ and, hence, the cdf is

$$
F_{X}(x)=\int_{-\infty}^{x} \mathbb{1}_{[0,1]}(x) d x= \begin{cases}0 & \text { if } x<0 \\ x & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

For $\alpha \in(0,1)$, we need to solve $F_{X}(x)=\alpha$. This gives that $x_{\alpha}=\alpha$ is the α-quantile. Lastly,

$$
\begin{aligned}
\mathbb{E}\left[X^{n}\right] & =\int_{0}^{1} x^{n} d x=\frac{1}{n+1} \\
\mathbb{E}\left[X^{1 / n}\right] & =\int_{0}^{1} x^{1 / n} d x=\frac{n}{n+1}
\end{aligned}
$$

(b) Using the hint, we compute

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha+1) \Gamma(\beta)}{\Gamma(\alpha+1+\beta)} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} \frac{\alpha \Gamma(\alpha)}{(\alpha+\beta) \Gamma(\alpha+\beta)}=\frac{\alpha}{\alpha+\beta} .
\end{aligned}
$$

To compute $\operatorname{Var}(X)$, we shall first compute $\mathbb{E}\left[X^{2}\right]$.

$$
\begin{aligned}
\mathbb{E}\left[X^{2}\right] & =\int_{0}^{1} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha+1}(1-x)^{\beta-1} d x=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \frac{\Gamma(\alpha+2) \Gamma(\beta)}{\Gamma(\alpha+2+\beta)} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)} \frac{(\alpha+1) \alpha \Gamma(\alpha)}{(\alpha+\beta+1)(\alpha+\beta) \Gamma(\alpha+\beta)}=\frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} & =\frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)}-\frac{\alpha^{2}}{(\alpha+\beta)^{2}}=\frac{\alpha}{\alpha+\beta}\left(\frac{\alpha+1}{\alpha+\beta+1}-\frac{\alpha}{\alpha+\beta}\right) \\
& =\frac{\alpha}{\alpha+\beta} \frac{(\alpha+1)(\alpha+\beta)-\alpha(\alpha+\beta+1)}{(\alpha+\beta)(\alpha+\beta+1)}=\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} .
\end{aligned}
$$

(c) We have

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} \lambda e^{-\lambda t} \mathbb{1}_{t>0} d t= \begin{cases}0 & \text { if } x<0 \\
\int_{0}^{x} \lambda e^{-\lambda t} d t=1-e^{-\lambda x} & \text { if } x \geq 0\end{cases} \\
& =\left(1-e^{-\lambda x}\right) \mathbb{1}_{x \geq 0} .
\end{aligned}
$$

Thus, for $x \geq 0$,

$$
F(x)=\alpha \Longleftrightarrow e^{-\lambda x}=1-\alpha \Longleftrightarrow x=-\frac{\log (1-\alpha)}{\lambda}
$$

so the α-quantile is $x_{\alpha}=\lambda^{-1} \log \left((1-\alpha)^{-1}\right)$. Further,

$$
\mathbb{E}\left[X^{n}\right]=\int_{0}^{\infty} x^{n} \lambda e^{-\lambda x} d x=\lambda \frac{\Gamma(n+1)}{\lambda^{n+1}} \int_{0}^{\infty} \underbrace{\frac{\lambda^{n+1}}{\Gamma(n+1)} x^{n+1-1} e^{-\lambda x}}_{\text {density of } \sim \Gamma(n+1, \lambda)} d x=\frac{n!}{\lambda^{n}} .
$$

In particular, $\mathbb{E}[X]=1 / \lambda$ and $\operatorname{Var}(X)=1 / \lambda^{2}$.
(d) We have

$$
\mathbb{E}[X]=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha+1-1} e^{-\beta x} d x=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+1)}{\beta^{\alpha+1}}=\frac{\alpha}{\beta}
$$

and

$$
\mathbb{E}\left[X^{2}\right]=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha+2-1} e^{-\beta x} d x=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \frac{\Gamma(\alpha+2)}{\beta^{\alpha+2}}=\frac{\alpha(\alpha+1)}{\beta^{2}}
$$

and, hence,

$$
\operatorname{Var}(X)=\frac{\alpha(\alpha+1)}{\beta^{2}}-\frac{\alpha^{2}}{\beta^{2}}=\frac{\alpha}{\beta^{2}}
$$

4. Exercise

This exercise is mainly on uniform distributions.
(a) Suppose $X \sim \mathcal{U}([-\pi / 2, \pi / 2])$. Compute $\mathbb{E}[\sin (X)]$ and $\operatorname{Var}(\sin (X))$.
(b) (i) The lengths of the sides of a triangle are $2 X, 3 X$ and $4 X$ with $X \sim \mathcal{U}([0, \alpha])$ for some unknown $\alpha \in(0, \infty)$. Let A be the (random) area of the triangle. Find $\mathbb{E}[A]$ and $\operatorname{Var}(A)$.
Hint: You can use Heron's formula for the area of a triangle, that is $A=\sqrt{s(s-a)(s-b)(s-c)}$ with $s=(a+b+c) / 2$ and a, b and c are the lengths of the sides of the triangle.
(ii) For what values of α is the probability that the area is bigger than 1 at least 50% ?
(c) Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{U}([0,1])$. Put $I_{n}=\min _{1 \leq i \leq n} X_{i}$ and $M_{n}=\max _{1 \leq i \leq n} X_{i}$. Find the cdf of I_{n} and M_{n}, respectively. Can you recognize these distributions? Give $\mathbb{E}\left[I_{n}\right], \operatorname{Var}\left(I_{n}\right), \mathbb{E}\left[M_{n}\right]$ and $\operatorname{Var}\left(M_{n}\right)$.

Solution:

(a) We have

$$
\mathbb{E}[\sin (X)]=\int_{-\pi / 2}^{\pi / 2} \frac{1}{\pi} \sin (x) d x=0
$$

because $\sin (x)$ is an odd function. Further,

$$
\operatorname{Var}(\sin (X))=\mathbb{E}\left[\sin (X)^{2}\right]-\mathbb{E}[\sin (X)]^{2}=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2} \sin (x)^{2} d x
$$

Recall that $\cos (2 x)=\cos (x)^{2}-\sin (x)^{2}=1-2 \sin (x)^{2}$. Thus, $\sin (x)^{2}=(1-\cos (2 x)) / 2$ and, hence,

$$
\operatorname{Var}(\sin (X))=\frac{1}{\pi}\left(\frac{\pi}{2}-\frac{1}{2} \int_{-\pi / 2}^{\pi / 2} \cos (2 x) d x\right)=\frac{1}{2}-\left.\frac{1}{\pi} \frac{1}{4} \sin (2 x)\right|_{-\pi / 2} ^{\pi / 2}=\frac{1}{2}
$$

(b) (i) We have $s=9 X / 2$ and

$$
A=\sqrt{\frac{9 X}{2}\left(\frac{9 X}{2}-2 X\right)\left(\frac{9 X}{2}-3 X\right)\left(\frac{9 X}{2}-4 X\right)}=\frac{3 \sqrt{15}}{4} X^{2}
$$

Thus,

$$
\mathbb{E}[A]=\frac{3 \sqrt{15}}{4} \frac{1}{\alpha} \int_{0}^{\alpha} x^{2} d x=\frac{\sqrt{15}}{4} \alpha^{2}
$$

and

$$
\mathbb{E}\left[A^{2}\right]=\left(\frac{3 \sqrt{15}}{4}\right)^{2} \frac{1}{\alpha} \int_{0}^{\alpha} x^{4} d x=\frac{27}{16} \alpha^{4}
$$

Hence,

$$
\operatorname{Var}(A)=\frac{27}{16} \alpha^{4}-\left(\frac{\sqrt{15}}{4} \alpha^{2}\right)^{2}=\frac{27}{16} \alpha^{4}-\frac{15}{16} \alpha^{4}=\frac{3}{4} \alpha^{4}
$$

(ii) We compute

$$
\begin{aligned}
\mathbb{P}(A \geq 1)=\mathbb{P}\left(\frac{3 \sqrt{15}}{4} X^{2} \geq 1\right)=\mathbb{P}\left(X^{2} \geq \frac{4}{3 \sqrt{15}}\right) & =1-\mathbb{P}\left(X \leq \sqrt{\frac{4}{3 \sqrt{15}}}\right) \\
& =1-F_{X}\left(\sqrt{\frac{4}{3 \sqrt{15}}}\right)
\end{aligned}
$$

Thus, $\mathbb{P}(A \geq 1) \geq 1 / 2$ if and only if $F_{X}\left(\sqrt{\frac{4}{3 \sqrt{15}}}\right) \leq 1 / 2$. On the other hand,

$$
F_{X}(x)=\int_{-\infty}^{x} \frac{1}{\alpha} \mathbb{1}_{[0, \alpha]}(x) d x= \begin{cases}0 & \text { if } x<0 \\ \frac{x}{\alpha} & \text { if } 0 \leq x<\alpha \\ 1 & \text { if } x \geq \alpha\end{cases}
$$

Hence, $F_{X}(x) \leq 1 / 2$ iff $x / \alpha \leq 1 / 2$ iff $\alpha \geq 2 x$. We conclude that α must be $\geq \frac{4}{\sqrt{3 \sqrt{15}}} \approx 1.173$.
(c) We compute

$$
\begin{aligned}
\mathbb{P}\left(I_{n} \leq x\right) & =1-\mathbb{P}\left(I_{n}>x\right)=1-\mathbb{P}\left(\min _{1 \leq i \leq n} X_{i}>x\right) \\
& =1-\mathbb{P}\left(X_{1}>x, \ldots, X_{n}>x\right) \stackrel{\text { independence }}{=} 1-\prod_{i=1}^{n} \mathbb{P}\left(X_{i}>x\right) \\
& =1-\mathbb{P}\left(X_{1}>x\right)^{n}
\end{aligned}
$$

since X_{1}, \ldots, X_{n} all have the same distribution. Thus,

$$
\mathbb{P}\left(I_{n} \leq x\right)=1-\left(1-F_{X_{1}}(x)\right)^{n}= \begin{cases}0 & \text { if } x<0 \\ 1-(1-x)^{n} & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

Similarly,

$$
\mathbb{P}\left(M_{n} \leq x\right)=\prod_{i=1}^{n} \mathbb{P}\left(X_{i} \leq x\right)=F_{X_{1}}(x)^{n}= \begin{cases}0 & \text { if } x<0 \\ x^{n} & \text { if } 0 \leq x<1 \\ 1 & \text { if } x \geq 1\end{cases}
$$

It follows that I_{n} admits the density $x \mapsto n(1-x)^{n-1} \mathbb{1}_{(0,1)}(x)$ and M_{n} the density $x \mapsto n x^{n-1} \mathbb{1}_{(0,1)}(x)$. Hence, $I_{n} \sim \operatorname{Beta}(1, n)$ and $M_{n} \sim \operatorname{Beta}(n, 1)$. Using question $3(\mathrm{~b})$, we find $\mathbb{E}\left[I_{n}\right]=\frac{1}{n+1}, \operatorname{Var}\left(I_{n}\right)=$ $\frac{n}{(n+1)^{2}(n+2)}$ and $\mathbb{E}\left[M_{n}\right]=\frac{n}{n+1}, \operatorname{Var}\left(M_{n}\right)=\frac{n}{(n+1)^{2}(n+2)}$.

