Sheet 6

Due: To be handed in before 07.04.2023 at 12:00.

1. Exercise

Consider the following joint probability density of some random pair (X, Y) for some $c>0$;

$$
f(x, y)= \begin{cases}c x y & \text { if } 1 \leq x \leq 3,1 \leq y \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find c.
(b) Are the random variables X and Y independent?
(c) Compute $\mathbb{E}[X], \mathbb{E}[Y]$ and $\mathbb{E}[X Y]$.

Solution:

(a) To be a density, f must satisfy

$$
1=\int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) d x d y=c \int_{1}^{3} \int_{1}^{3} x y d x d y=c\left(\int_{1}^{3} x d x\right)^{2}=16 c .
$$

Thus, $c=1 / 16$.
(b) We note that

$$
f(x, y)=\frac{1}{16} x y \mathbb{1}_{[1,3]}(x) \mathbb{1}_{[1,3]}(y)=f_{1}(x) f_{2}(y)
$$

with $f_{1}(x)=\frac{1}{4} x \mathbb{1}_{[1,3]}(x)$ and $f_{2}(y)=\frac{1}{4} y \mathbb{1}_{[1,3]}(y)$ the respective pdfs of X and Y. Hence, X and Y are independent.
(c) Since X and Y have the same marginal density, we have that

$$
\mathbb{E}[X]=\mathbb{E}[Y]=\int_{\mathbb{R}} x f_{1}(x) d x=\frac{1}{4} \int_{1}^{3} x^{2} d x=\frac{13}{6} .
$$

Since X and Y are independent and, in particular, uncorrelated, we know that $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]=$ $\frac{169}{36}$.

2. Exercise

Let f be the following joint probability density of some random pair (X, Y) for some $\alpha>0$;

$$
f(x, y)=\alpha \frac{1}{x^{2}} \mathbb{1}_{1 \leq x \leq y \mathbb{1}_{[1,2]}(y) .} .
$$

(a) Find α.
(b) Are the random variables X and Y independent?
(c) Compute the covariance $\operatorname{cov}(X, Y)$ and the correlation $\rho(X, Y)$.

Solution:

(a) To be density, f must satisfy

$$
1=\iint_{\mathbb{R}^{2}} f(x, y) d x d y=\alpha \int_{1}^{2} \int_{1}^{y} \frac{1}{x^{2}} d x d y=\alpha \int_{1}^{2}\left(1-y^{-1}\right) d y=\alpha(1-\log 2)
$$

Hence, $\alpha=1 /(1-\log 2)$.
(b) Using that $\mathbb{1}_{1 \leq x \leq y} \mathbb{1}_{[1,2]}(y)=\mathbb{1}_{[x, 2]}(y) \mathbb{1}_{[1,2]}(x)$, the marginal density of X is given by

$$
f_{1}(x)=\int_{\mathbb{R}} f(x, y) d y=\alpha \int_{\mathbb{R}} \frac{1}{x^{2}} \mathbb{1}_{[x, 2]}(y) \mathbb{1}_{[1,2]}(x) d y=\alpha \frac{1}{x^{2}} \mathbb{1}_{[1,2]}(x) \int_{x}^{2} d y=\alpha \frac{2-x}{x^{2}} \mathbb{1}_{[1,2]}(x) .
$$

Also,

$$
f_{2}(y)=\alpha \int_{\mathbb{R}} \frac{1}{x^{2}} \mathbb{1}_{1 \leq x \leq y} \mathbb{1}_{[1,2]}(y) d x=\alpha \mathbb{1}_{[1,2]}(y) \int_{1}^{y} \frac{1}{x^{2}} d x=\alpha \frac{y-1}{y} \mathbb{1}_{[1,2]}(y) .
$$

It is clear that $f(x, y) \neq f_{1}(x) f_{2}(y)$ for some $(x, y) \in \mathbb{R}^{2}$ and, therefore, X and Y are not independent.
(c) By definition, $\operatorname{cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$. We have

$$
\mathbb{E}[X]=\int_{\mathbb{R}} x f_{1}(x) d x=\alpha \int_{1}^{2} \frac{x(2-x)}{x^{2}} d x=\alpha\left(\int_{1}^{2} \frac{2}{x} d x-\int_{1}^{2} d x\right)=\alpha(2 \log 2-1)
$$

and

$$
\mathbb{E}[Y]=\int_{\mathbb{R}} y f_{2}(y) d y=\alpha \int_{1}^{2} y\left(1-y^{-1}\right) d y=\alpha\left(\frac{3}{2}-1\right)=\frac{\alpha}{2}
$$

and

$$
\begin{aligned}
\mathbb{E}[X Y] & =\iint_{\mathbb{R}^{2}} x y f(x, y) d x d y=\alpha \int_{1}^{2} \int_{1}^{y} \frac{x y}{x^{2}} d x d y \\
& =\alpha \int_{1}^{2} y \int_{1}^{y} \frac{1}{x} d x d y=\alpha \int_{1}^{2} y \log y d y \underset{\text { by parts }}{\stackrel{\text { integration }}{=}} \alpha\left(\left.\frac{y^{2}}{2} \log y\right|_{1} ^{2}-\frac{1}{2} \int_{1}^{2} y^{2} \frac{1}{y} d y\right) \\
& =\alpha\left(2 \log 2-\frac{3}{4}\right) .
\end{aligned}
$$

Plugging in $\alpha=1 /(1-\log 2)$, it follows that

$$
\begin{aligned}
\operatorname{cov}(X, Y) & =\alpha\left(2 \log 2-\frac{3}{4}\right)-\frac{\alpha^{2}}{2}(2 \log 2-1)=\frac{\alpha^{2}}{2}\left(\frac{4 \log 2-\frac{3}{2}}{\alpha}-2 \log 2+1\right) \\
& =\frac{1}{2(1-\log 2)^{2}}\left((1-\log 2)\left(4 \log 2-\frac{3}{2}\right)-2 \log 2+1\right) \\
& =\frac{1}{2(1-\log 2)^{2}}\left(4 \log 2(1-\log 2)-\frac{\log 2}{2}-\frac{1}{2}\right) .
\end{aligned}
$$

By definition,

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

We compute

$$
\mathbb{E}\left[X^{2}\right]=\int_{\mathbb{R}} x^{2} f_{1}(x) d x=\alpha \int_{1}^{2} \frac{x^{2}(2-x)}{x^{2}} d x=\alpha \int_{1}^{2}(2-x) d x=\frac{\alpha}{2}
$$

and, hence,

$$
\begin{aligned}
\operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} & =\frac{\alpha}{2}-\alpha^{2}(2 \log 2-1)^{2}=\frac{\alpha^{2}}{2}\left(\frac{1}{\alpha}-2(2 \log 2-1)^{2}\right) \\
& =\frac{1}{2(1-\log 2)^{2}}\left(1-\log 2-2(2 \log 2-1)^{2}\right)
\end{aligned}
$$

Similarly,

$$
\mathbb{E}\left[Y^{2}\right]=\int_{\mathbb{R}} y^{2} f_{2}(y) d y=\alpha \int_{1}^{2} y^{2}\left(1-y^{-1}\right) d y=\frac{5 \alpha}{6}
$$

and

$$
\begin{aligned}
\operatorname{Var}(Y)=\mathbb{E}\left[Y^{2}\right]-\mathbb{E}[Y]^{2} & =\frac{5 \alpha}{6}-\frac{\alpha^{2}}{4}=\frac{\alpha^{2}}{2}\left(\frac{5}{3 \alpha}-\frac{1}{2}\right)=\frac{1}{2(1-\log 2)^{2}}\left(\frac{5(1-\log 2)}{3}-\frac{1}{2}\right) \\
& =\frac{1}{2(1-\log 2)^{2}}\left(\frac{7}{6}-\frac{5 \log 2}{3}\right)
\end{aligned}
$$

Thus,

$$
\rho(X, Y)=\sqrt{6} \frac{4 \log 2(1-\log 2)-\frac{\log 2}{2}-\frac{1}{2}}{\sqrt{\left(1-\log 2-2(2 \log 2-1)^{2}\right)(7-10 \log 2)}} \approx 0.429
$$

3. Exercise

Let X and Y be two i.i.d. $\sim \mathcal{G}(p)$ geometric random variables for some $p \in(0,1)$. Compute $\mathbb{P}(X \geq Y)$ and $\mathbb{P}(X>Y)$.

Solution:

Since X and Y play similar roles, we have that $\mathbb{P}(X \geq Y)=\mathbb{P}(Y \geq X)$. On the other hand,

$$
\begin{aligned}
\mathbb{P}(X \geq Y)+\mathbb{P}(X<Y)=1 & \Longleftrightarrow \mathbb{P}(X \geq Y)+\mathbb{P}(X \leq Y)-\mathbb{P}(X=Y)=1 \\
& \Longleftrightarrow 2 \mathbb{P}(X \geq Y)=1+\mathbb{P}(X=Y) \\
& \Longleftrightarrow \mathbb{P}(X \geq Y)=\frac{1+\mathbb{P}(X=Y)}{2}
\end{aligned}
$$

If $f_{\text {joint }}$ denotes the joint probability mass function of (X, Y), then $\mathbb{P}(X=Y)=\sum_{x, y \geq 0} \mathbb{1}_{x=y} f_{\text {joint }}(x, y)$. Since X and Y are independent, we have that $f_{\text {joint }}(x, y)=f(x) f(y)$, where $f(x)=p(1-p)^{x}$ for $x=$ $0,1,2, \ldots$ Thus,

$$
\mathbb{P}(X=Y)=\sum_{x \geq 0} f(x)^{2}=p^{2} \sum_{x \geq 0}(1-p)^{2 x}=\frac{p^{2}}{1-(1-p)^{2}}=\frac{p}{2-p}
$$

We conclude that

$$
\mathbb{P}(X \geq Y)=\frac{1}{2}\left(1+\frac{p}{2-p}\right)=\frac{1}{2-p}
$$

and

$$
\mathbb{P}(X>Y)=\mathbb{P}(X \geq Y)-\mathbb{P}(X=Y)=\frac{1-p}{2-p}
$$

