Sheet 7

Due: To be handed in before 21.04.2023 at 12:00.

1. Exercise

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $X_{n}(\omega) \nearrow$ for $\forall \omega \in \Omega$ and $X_{n}(\omega) \geq 0$. Set $X_{\infty}(\omega)=$ $\lim _{n \rightarrow \infty} X_{n}(\omega)$.

The Beppo Levi's Theorem says that

$$
\mathbb{E}\left(X_{\infty}\right)=\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)
$$

Use this result to show that if X is a random variable, then

$$
\mathbb{E}(|X|)=0 \Leftrightarrow \mathbb{P}(X=0)=1
$$

Hint:

- Consider $Y_{n}=|X| \mathbb{1}_{\{|X| \leq n\}}$ for " \Leftarrow ".
- Write $\{X=0\}=\bigcap_{n=1}^{\infty}\left\{|X| \leq \frac{1}{n}\right\}$ for " \Rightarrow ".

2. Exercise

(a) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables and X be a random variable, all defined on the same probability space. We write that $X_{n} \xrightarrow{r} X$ or $X_{n} \xrightarrow{L_{r}} X$ for $r>0$ if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X-X_{n}\right|^{r}\right]=0$. Show that $X_{n} \xrightarrow{r} X$ implies $X_{n} \xrightarrow{\mathbb{P}} X$.
(b) Give an example of a sequence $\left(X_{n}\right)_{n \geq 1}$ such that $X_{n} \xrightarrow{\mathbb{P}} 0$ but not $X_{n} \xrightarrow{L_{2}} 0$.
(c) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $\mathbb{P}\left(X_{n}=0\right)=1-n^{-\alpha}$ and $\mathbb{P}\left(X_{n}=\sqrt{n}\right)=n^{-\alpha}$ for all $n \geq 1$ and some $\alpha>0$. Show that if $\alpha>1$, then $X_{n} \rightarrow 0$ a.s.
(d) Consider $Z \sim \mathcal{U}([0,1])$ and the random sequence $\left(X_{n}\right)_{n \geq 1}$ defined as $X_{n}=\mathbb{1}_{Z \in\left[m 2^{-k},(m+1) 2^{-k}\right)}$ if $n=2^{k}+m$ with $m \in\left\{0,1, \ldots, 2^{k}-1\right\}$ and $k \in\{0,1, \ldots\}$. Show that $X_{n} \xrightarrow{\mathbb{P}} 0$ but that $X_{n} \xrightarrow{\text { a.s. }} 0$.

3. Exercise

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $X_{n} \xrightarrow{\mathbb{P}} c$ for some constant $c \in \mathbb{R}$. Show that we also have that $X_{n} \xrightarrow{\mathcal{L}} c$.

4. Exercise

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $X_{n} \sim \operatorname{Bin}(n, \lambda / n)$ for some $\lambda \in(0, \infty)$ and integer $n>\lambda$.
(a) For a fixed integer $k \geq 0$ and n large enough, write down $\mathbb{P}\left(X_{n}=k\right)$.
(b) Show that $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=k\right)=e^{-\lambda} \lambda^{k} / k$! for all $k \in\{0,1, \ldots\}$.
(c) Show that if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of random variables and X is a random variable with $X_{n} \in\{0,1, \ldots\}$ and $X \in\{0,1, \ldots\}$, then

$$
X_{n} \xrightarrow{\mathcal{L}} X \quad \Longleftrightarrow \quad \mathbb{P}\left(X_{n}=k\right) \xrightarrow{n \rightarrow \infty} \mathbb{P}(X=k) \quad \forall k \in\{0,1, \ldots\} .
$$

(d) What do you conclude from (b)?

5. Exercise

It costs one dollar to play a certain slot machine in Las Vegas. The machine is set by the house to pay two dollars with probability 0.45 and pay nothing with probability 0.55 . Let $X_{i}=$ the house's net winning on the $i^{t h}$ play of the machine and let $S_{n}=\sum_{i=1}^{n} X_{i}$ be the house's winning after n plays. We assume that X_{1}, \ldots, X_{n} are independent.
(a) Find $\mathbb{E}\left[S_{n}\right]$.
(b) Find $\operatorname{Var}\left(S_{n}\right)$.
(c) Use the normal approximation to approximately compute $\mathbb{P}\left(800<S_{10000} \leq 1100\right)$.

