Sheet 7

Due: To be handed in before 21.04.2023 at 12:00.

1. Exercise

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $X_{n}(\omega) \nearrow$ for $\forall \omega \in \Omega$ and $X_{n}(\omega) \geq 0$. Set $X_{\infty}(\omega)=$ $\lim _{n \rightarrow \infty} X_{n}(\omega)$.

The Beppo Levi's Theorem says that

$$
\mathbb{E}\left(X_{\infty}\right)=\lim _{n \rightarrow \infty} \mathbb{E}\left(X_{n}\right)
$$

Use this result to show that if X is a random variable, then

$$
\mathbb{E}(|X|)=0 \Leftrightarrow \mathbb{P}(X=0)=1
$$

Hint:

- Consider $Y_{n}=|X| \mathbb{1}_{\{|X| \leq n\}}$ for " \Leftarrow ".
- Write $\{X=0\}=\bigcap_{n=1}^{\infty}\left\{|X| \leq \frac{1}{n}\right\}$ for " \Rightarrow ".

Solution:

$" \Leftarrow ": Y_{n}(\omega) \nearrow$ for $\forall \omega \in \Omega$ and $Y_{n}(\omega) \geq 0$. Also, $\lim _{n \rightarrow \infty} Y_{n}(\omega)=|X(\omega)|$.
By the Beppo Levi's Theorem, we have that $\mathbb{E}(|X|)=\lim _{n \rightarrow \infty} \mathbb{E}\left(Y_{n}\right)$ where

$$
\begin{aligned}
\mathbb{E}\left(Y_{n}\right) & =\int_{\Omega}|X(\omega)| \mathbb{1}_{\{|X(\omega)| \leq n\}} d \mathbb{P}(\omega) \\
& =\int_{\{\omega: X(\omega)=0\}}|X(\omega)| \mathbb{1}_{\{|X(\omega)| \leq n\}} d \mathbb{P}(\omega)+\int_{\{\omega: X(\omega) \neq 0\}}|X(\omega)| \mathbb{1}_{\{|X(\omega)| \leq n\}} d \mathbb{P}(\omega) \\
& =\int_{\{\omega: X(\omega) \neq 0\}}|X(\omega)| \mathbb{1}_{\{|X(\omega)| \leq n\}} d \mathbb{P}(\omega) \\
& \leq n \int_{\{\omega: X(\omega) \neq 0\}} d \mathbb{P}(\omega)=n \cdot \mathbb{P}(X \neq 0)=n \cdot 0=0,
\end{aligned}
$$

since $\mathbb{P}(X \neq 0)=1-\mathbb{P}(X=0)=0$. Therefore $\mathbb{E}\left(Y_{n}\right)=0$, which implies that $\mathbb{E}(|X|)=0$.
$" \Rightarrow ":\{X=0\}=\bigcap_{n=1}^{\infty}\left\{|X| \leq \frac{1}{n}\right\}$.
Since $\left\{|X| \leq \frac{1}{n}\right\}_{n \geq 1} \searrow$, it follows that

$$
\mathbb{P}(X=0)=\lim _{n \rightarrow \infty} \mathbb{P}\left(|X| \leq \frac{1}{n}\right)
$$

Now,

$$
\begin{aligned}
\mathbb{P}\left(|X| \leq \frac{1}{n}\right) & =1-\mathbb{P}\left(|X|>\frac{1}{n}\right) \\
& \geq 1-n \cdot \mathbb{E}(|X|) \text { (by Markov's inequality) } \\
& =1
\end{aligned}
$$

$\Rightarrow \mathbb{P}\left(|X| \leq \frac{1}{n}\right)=1 \Rightarrow \mathbb{P}(X=0)=1$.

2. Exercise

(a) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables and X be a random variable, all defined on the same probability space. We write that $X_{n} \xrightarrow{r} X$ or $X_{n} \xrightarrow{L_{r}} X$ for $r>0$ if $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X-X_{n}\right|^{r}\right]=0$. Show that $X_{n} \xrightarrow{r} X$ implies $X_{n} \xrightarrow{\mathbb{P}} X$.
(b) Give an example of a sequence $\left(X_{n}\right)_{n \geq 1}$ such that $X_{n} \xrightarrow{\mathbb{P}} 0$ but not $X_{n} \xrightarrow{L_{2}} 0$.
(c) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $\mathbb{P}\left(X_{n}=0\right)=1-n^{-\alpha}$ and $\mathbb{P}\left(X_{n}=\sqrt{n}\right)=n^{-\alpha}$ for all $n \geq 1$ and some $\alpha>0$. Show that if $\alpha>1$, then $X_{n} \rightarrow 0$ a.s.
(d) Consider $Z \sim \mathcal{U}([0,1])$ and the random sequence $\left(X_{n}\right)_{n \geq 1}$ defined as $X_{n}=\mathbb{1}_{Z \in\left[m 2^{-k},(m+1) 2^{-k}\right)}$ if $n=2^{k}+m$ with $m \in\left\{0,1, \ldots, 2^{k}-1\right\}$ and $k \in\{0,1, \ldots\}$. Show that $X_{n} \xrightarrow{\mathbb{P}} 0$ but that $X_{n} \xrightarrow{\text { a.s. }} 0$.

Solution:

(a) Fix $\varepsilon>0$. Using Markov's inequality,

$$
\begin{equation*}
\mathbb{P}\left(\left|X-X_{n}\right|>\varepsilon\right)=\mathbb{P}\left(\left|X-X_{n}\right|^{r}>\varepsilon^{r}\right) \leq \varepsilon^{-r} \mathbb{E}\left[\left|X-X_{n}\right|^{r}\right] \xrightarrow{n \rightarrow \infty} 0 . \tag{1}
\end{equation*}
$$

Thus, $X_{n} \xrightarrow{\mathbb{P}} X$.
(b) Let

$$
X_{n}= \begin{cases}0 & \text { with probability } 1-1 / n \\ \sqrt{n} & \text { with probability } 1 / n\end{cases}
$$

Fix $\varepsilon>0$ and let $n>\varepsilon^{2}$. Then $\left\{\left|X_{n}-0\right|>\varepsilon\right\}=\left\{X_{n}>\varepsilon\right\}=\left\{X_{n}=\sqrt{n}\right\}$, implying that $\mathbb{P}\left(\left|X_{n}-0\right|>\right.$ $\varepsilon)=1 / n \rightarrow 0$ and, hence, $X_{n} \xrightarrow{\mathbb{P}} 0$. But $\mathbb{E}\left[\left|X_{n}-0\right|^{2}\right]=\mathbb{E}\left[X_{n}^{2}\right]=0 \cdot(1-1 / n)+\sqrt{n}^{2} \cdot(1 / n)=1$.
(c) Fix $\varepsilon>0$. Then

$$
\sum_{n \geq 1} \mathbb{P}\left(\left|X_{n}-0\right|>\varepsilon\right)=\sum_{n \geq 1} \mathbb{P}\left(X_{n}>\varepsilon\right)=\sum_{n: n>\varepsilon^{2}} \mathbb{P}\left(X_{n}=\sqrt{n}\right)=\sum_{n: n>\varepsilon^{2}} n^{-\alpha}<\infty \quad \forall \alpha>1
$$

By a result from the lecture, this implies that $X_{n} \rightarrow 0$ a.s.
(d) Fix $\varepsilon>0$. Then

$$
\begin{aligned}
\mathbb{P}\left(\left|X_{n}-0\right|>\varepsilon\right)=\mathbb{P}\left(X_{n}>\varepsilon\right) & = \begin{cases}0 & \text { if } \varepsilon \geq 1, \\
\mathbb{P}\left(Z \in\left[m 2^{-k},(m+1) 2^{-k}\right)\right) & \text { if } \varepsilon<1\end{cases} \\
& = \begin{cases}0 & \text { if } \varepsilon \geq 1, \\
2^{-k}=\frac{2}{2^{k+1}} \leq \frac{2}{n+1} & \text { if } \varepsilon<1\end{cases}
\end{aligned}
$$

since $n=2^{k}+m \leq 2^{k+1}-1$. Thus, $\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-0\right|>\varepsilon\right)=0$ and $X_{n} \xrightarrow{\mathbb{P}} 0$.
Now, we show that $X_{n} \xrightarrow{\text { a.s. }} 0$. Note that if $\left(x_{n}\right)_{n \geq 1}$ is some real sequence such that $\lim _{n \rightarrow 0} x_{n}=0$, then we also have $\lim _{k \rightarrow 0} \max _{m \in\left\{0, \ldots, 2^{k}-1\right\}}\left|x_{2^{k}+m}\right|=0$. Indeed, for all $\varepsilon>0$ there exists $n_{0}>0$ such that $\left|x_{n}\right|<\varepsilon$ for all $n \geq n_{0}$. Take k such that $2^{k} \geq n_{0}$. Then $\left|x_{2^{k}+m}\right|<\varepsilon$ for all $m \in\left\{0, \ldots, 2^{k}-1\right\}$ and, hence, $\max _{m \in\left\{0, \ldots, 2^{k}-1\right\}}\left|x_{2^{k}+m}\right|<\varepsilon$. Thus,

$$
\begin{aligned}
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=0\right) & \leq \mathbb{P}\left(\lim _{k \rightarrow \infty} \max _{m \in\left\{0, \ldots, 2^{k}-1\right\}} X_{2^{k}+m}=0\right) \\
& =\mathbb{P}\left(\lim _{k \rightarrow \infty} \max _{m \in\left\{0, \ldots, 2^{k}-1\right\}} \mathbb{1}_{Z \in\left[m 2^{-k},(m+1) 2^{-k}\right)}=0\right)=\mathbb{P}(Z=1)=0,
\end{aligned}
$$

where we used that for all $z \in[0,1)$ we have $\max _{m \in\left\{0, \ldots, 2^{k}-1\right\}} \mathbb{1}_{z \in\left[m 2^{-k},(m+1) 2^{-k}\right)}=1$. This shows that $X_{n} \xrightarrow{\text { a.s. }} 0$.

3. Exercise

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $X_{n} \xrightarrow{\mathbb{P}} c$ for some constant $c \in \mathbb{R}$. Show that we also have that $X_{n} \xrightarrow{\mathcal{L}} c$.

Solution:

Let g be a continuous and bounded function on \mathbb{R}. We want to show that $\mathbb{E}\left[g\left(X_{n}\right)\right] \rightarrow \mathbb{E}[g(c)]=g(c)$ as $n \rightarrow \infty$. Let $\varepsilon>0$. We have that

$$
\mathbb{E}\left[\left|g\left(X_{n}\right)-g(c)\right|\right]=\mathbb{E}\left[\left|g\left(X_{n}\right)-g(c)\right| \mathbb{1}_{\left|X_{n}-c\right|>\varepsilon}\right]+\mathbb{E}\left[\left|g\left(X_{n}\right)-g(c)\right| \mathbb{1}_{\left|X_{n}-c\right| \leq \varepsilon}\right]=: A+B .
$$

Since g is continuous at c, it follows that for all $\eta>0$ there exists $a>0$ such that $|x-c| \leq a$ implies $|g(x)-g(c)| \leq \eta$. For $\varepsilon=a$, we have $B \leq \eta \mathbb{P}\left(\left|X_{n}-c\right| \leq \varepsilon\right) \leq \eta$. Also,

$$
A \leq 2 \sup _{t \in \mathbb{R}}|g(t)| \mathbb{E}\left[\mathbb{1}_{\left|X_{n}-c\right|>a}\right]=2 \sup _{t \in \mathbb{R}}|g(t)| \mathbb{P}\left(\left|X_{n}-c\right|>a\right)
$$

Thus,

$$
\mathbb{E}\left[\left|g\left(X_{n}\right)-g(c)\right|\right] \leq \eta+2 \sup _{t \in \mathbb{R}}|g(t)| \mathbb{P}\left(\left|X_{n}-c\right|>a\right)
$$

and, hence, $\lim \sup _{n \rightarrow \infty} \mathbb{E}\left[\left|g\left(X_{n}\right)-g(c)\right|\right] \leq \eta$, using the assumption that $X_{n} \xrightarrow{\mathbb{P}} c$. Since $\eta>0$ was arbitrary, it follows that $\limsup _{n \rightarrow \infty} \mathbb{E}\left[\left|g\left(X_{n}\right)-g(c)\right|\right]=0$, which implies $\lim _{n \rightarrow \infty} \mathbb{E}\left[g\left(X_{n}\right)\right]=g(c)$.

4. Exercise

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables such that $X_{n} \sim \operatorname{Bin}(n, \lambda / n)$ for some $\lambda \in(0, \infty)$ and integer $n>\lambda$.
(a) For a fixed integer $k \geq 0$ and n large enough, write down $\mathbb{P}\left(X_{n}=k\right)$.
(b) Show that $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=k\right)=e^{-\lambda} \lambda^{k} / k$! for all $k \in\{0,1, \ldots\}$.
(c) Show that if $\left(X_{n}\right)_{n \geq 1}$ is a sequence of random variables and X is a random variable with $X_{n} \in\{0,1, \ldots\}$ and $X \in\{0,1, \ldots\}$, then

$$
X_{n} \xrightarrow{\mathcal{L}} X \quad \Longleftrightarrow \quad \mathbb{P}\left(X_{n}=k\right) \xrightarrow{n \rightarrow \infty} \mathbb{P}(X=k) \quad \forall k \in\{0,1, \ldots\} .
$$

(d) What do you conclude from (b)?

Solution:

(a) For $n \geq k$, we have that $\mathbb{P}\left(X_{n}=k\right)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}$.
(b) We have

$$
\begin{aligned}
\mathbb{P}\left(X_{n}=k\right) & =\frac{n!}{k!(n-k)!}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k} \\
& =\underbrace{\frac{n(n-1) \cdots \cdots(n-k+1)}{n^{k}}\left(1-\frac{\lambda}{n}\right)^{-k}}_{\rightarrow 1 \text { as } n \rightarrow \infty} \frac{\lambda^{k}}{k!}\left(1-\frac{\lambda}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} \frac{\lambda^{k}}{k!} e^{-\lambda} .
\end{aligned}
$$

(c) Suppose $\mathbb{P}\left(X_{n}=k\right) \xrightarrow{n \rightarrow \infty} \mathbb{P}(X=k)$ for all $k \in\{0,1, \ldots\}$ and let x be a point of continuity of the cdf
of X. In the following, we write $F_{X_{n}}$ and F_{X} for the cdfs of X_{n} and X, respectively. Then,

$$
F_{X_{n}}(x)=\sum_{k=0}^{[x]} \mathbb{P}\left(X_{n}=k\right) \xrightarrow{n \rightarrow \infty} \sum_{k=0}^{[x]} \mathbb{P}(X=k)=F_{X}(x),
$$

where $[x]$ is the integer part of x. Hence, $X_{n} \xrightarrow{\mathcal{L}} X$.
Now, suppose $X_{n} \xrightarrow{\mathcal{L}} X$. Then, for all $k \in\{0,1, \ldots\}$ and $x \in(k, k+1), F_{X_{n}}(x) \xrightarrow{n \rightarrow \infty} F_{X}(x)$. Thus, $F_{X_{n}}(k+1 / 2) \xrightarrow{n \rightarrow \infty} F_{X}(k+1 / 2)$. But $F_{X_{n}}(k+1 / 2)=F_{X_{n}}(k)$ and $F_{X}(k+1 / 2)=F_{X}(k)$, which implies $F_{X_{n}}(k) \xrightarrow{n \rightarrow \infty} F_{X}(k)$. Hence,

$$
\mathbb{P}\left(X_{n}=k\right)=F_{X_{n}}(k)-F_{X_{n}}(k-1) \xrightarrow{n \rightarrow \infty} F_{X}(k)-F_{X}(k-1)=\mathbb{P}(X=k)
$$

for all $k \in\{1,2, \ldots\}$ and

$$
\mathbb{P}\left(X_{n}=0\right)=F_{X_{n}}(0) \xrightarrow{n \rightarrow \infty} F_{X}(0)=\mathbb{P}(X=0) .
$$

(d) That $\operatorname{Bin}(n, \lambda / n) \xrightarrow{\mathcal{L}} \operatorname{Pois}(\lambda)$.

5. Exercise

It costs one dollar to play a certain slot machine in Las Vegas. The machine is set by the house to pay two dollars with probability 0.45 and pay nothing with probability 0.55 . Let $X_{i}=$ the house's net winning on the $i^{\text {th }}$ play of the machine and let $S_{n}=\sum_{i=1}^{n} X_{i}$ be the house's winning after n plays. We assume that X_{1}, \ldots, X_{n} are independent.
(a) Find $\mathbb{E}\left[S_{n}\right]$.
(b) Find $\operatorname{Var}\left(S_{n}\right)$.
(c) Use the normal approximation to approximately compute $\mathbb{P}\left(800<S_{10000} \leq 1100\right)$.

Solution:

(a) $\mathbb{E}\left[S_{n}\right]=n \mathbb{E}\left[X_{1}\right]=n((-1) \cdot 0.45+1 \cdot 0.55)=0.1 n$. Note that we do not use independence when computing $\mathbb{E}\left[S_{n}\right]$.
(b) We have

$$
\begin{aligned}
\operatorname{Var}\left(S_{n}\right) & =n \operatorname{Var}\left(X_{1}\right)=n \mathbb{E}\left[\left(X_{1}-0.1\right)^{2}\right] \\
& =n\left((-1-0.1)^{2} \cdot 0.45+(1-0.1)^{2} \cdot 0.55\right)=0.99 n
\end{aligned}
$$

(c) With $n=10000$ and $Z_{n}=\frac{S_{n}-\mathbb{E}\left[S_{n}\right]}{\sqrt{\operatorname{Var}\left(S_{n}\right)}}$, we have

$$
\begin{aligned}
\mathbb{P}\left(800<S_{n} \leq 1100\right) & =\mathbb{P}\left(\frac{800-0.1 \cdot 10000}{\sqrt{0.99 \cdot 10000}}<Z_{n} \leq \frac{1100-0.1 \cdot 10000}{\sqrt{0.99 \cdot 10000}}\right) \\
& \approx \Phi(1.005)-\Phi(-2.01) \approx 0.82
\end{aligned}
$$

with Φ the cdf of $\mathcal{N}(0,1)$.

