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1. Exercise

Let (Xn)n≥1 be a sequence of random variables such that Xn(ω) ↗ for ∀ω ∈ Ω and Xn(ω) ≥ 0. Set X∞(ω) =
lim
n→∞

Xn(ω).

The Beppo Levi’s Theorem says that

E(X∞) = lim
n→∞

E(Xn).

Use this result to show that if X is a random variable, then

E(|X|) = 0 ⇔ P(X = 0) = 1.

Hint:

• Consider Yn = |X|1{|X|≤n} for “⇐”.

• Write
{
X = 0

}
=

∞⋂
n=1

{
|X| ≤ 1

n

}
for “⇒”.

Solution:

“⇐”: Yn(ω) ↗ for ∀ω ∈ Ω and Yn(ω) ≥ 0. Also, lim
n→∞

Yn(ω) = |X(ω)|.
By the Beppo Levi’s Theorem, we have that E(|X|) = lim

n→∞
E(Yn) where

E(Yn) =

∫
Ω

|X(ω)|1{|X(ω)|≤n}dP(ω)

=

∫
{ω:X(ω)=0}

|X(ω)|1{|X(ω)|≤n}dP(ω) +
∫
{ω:X(ω)̸=0}

|X(ω)|1{|X(ω)|≤n}dP(ω)

=

∫
{ω:X(ω)̸=0}

|X(ω)|1{|X(ω)|≤n}dP(ω)

≤ n

∫
{ω:X(ω)̸=0}

dP(ω) = n · P(X ̸= 0) = n · 0 = 0,

since P(X ̸= 0) = 1− P(X = 0) = 0. Therefore E(Yn) = 0, which implies that E(|X|) = 0.

“⇒”:
{
X = 0

}
=

∞⋂
n=1

{
|X| ≤ 1

n

}
.

Since
{
|X| ≤ 1

n

}
n≥1

↘, it follows that

P(X = 0) = lim
n→∞

P
(
|X| ≤ 1

n

)
.

Now,

P
(
|X| ≤ 1

n

)
= 1− P

(
|X| > 1

n

)
≥ 1− n · E(|X|) (by Markov’s inequality)

= 1.

⇒ P
(
|X| ≤ 1

n

)
= 1 ⇒ P(X = 0) = 1.
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2. Exercise

(a) Let (Xn)n≥1 be a sequence of random variables and X be a random variable, all defined on the same

probability space. We write that Xn
r−→ X or Xn

Lr−−→ X for r > 0 if limn→∞ E[|X −Xn|r] = 0. Show that

Xn
r−→ X implies Xn

P−→ X.

(b) Give an example of a sequence (Xn)n≥1 such that Xn
P−→ 0 but not Xn

L2−−→ 0.

(c) Let (Xn)n≥1 be a sequence of random variables such that P(Xn = 0) = 1 − n−α and P(Xn =
√
n) = n−α

for all n ≥ 1 and some α > 0. Show that if α > 1, then Xn → 0 a.s.

(d) Consider Z ∼ U([0, 1]) and the random sequence (Xn)n≥1 defined as Xn = 1Z∈[m2−k,(m+1)2−k) if n = 2k+m

with m ∈ {0, 1, . . . , 2k − 1} and k ∈ {0, 1, . . . }. Show that Xn
P−→ 0 but that Xn

a.s.↛ 0.

Solution:

(a) Fix ε > 0. Using Markov’s inequality,

P(|X −Xn| > ε) = P(|X −Xn|r > εr) ≤ ε−rE[|X −Xn|r]
n→∞−−−−→ 0. (1)

Thus, Xn
P−→ X.

(b) Let

Xn =

{
0 with probability 1− 1/n,
√
n with probability 1/n.

Fix ε > 0 and let n > ε2. Then {|Xn−0| > ε} = {Xn > ε} = {Xn =
√
n}, implying that P(|Xn−0| >

ε) = 1/n → 0 and, hence, Xn
P−→ 0. But E[|Xn − 0|2] = E[X2

n] = 0 · (1− 1/n) +
√
n
2 · (1/n) = 1.

(c) Fix ε > 0. Then∑
n≥1

P(|Xn − 0| > ε) =
∑
n≥1

P(Xn > ε) =
∑

n : n>ε2

P(Xn =
√
n) =

∑
n : n>ε2

n−α < ∞ ∀α > 1.

By a result from the lecture, this implies that Xn → 0 a.s.

(d) Fix ε > 0. Then

P(|Xn − 0| > ε) = P(Xn > ε) =

{
0 if ε ≥ 1,

P(Z ∈ [m2−k, (m+ 1)2−k)) if ε < 1

=

{
0 if ε ≥ 1,

2−k = 2
2k+1 ≤ 2

n+1 if ε < 1

since n = 2k +m ≤ 2k+1 − 1. Thus, limn→∞ P(|Xn − 0| > ε) = 0 and Xn
P−→ 0.

Now, we show that Xn
a.s.↛ 0. Note that if (xn)n≥1 is some real sequence such that limn→0 xn = 0,

then we also have limk→0 maxm∈{0,...,2k−1} |x2k+m| = 0. Indeed, for all ε > 0 there exists n0 > 0 such

that |xn| < ε for all n ≥ n0. Take k such that 2k ≥ n0. Then |x2k+m| < ε for all m ∈ {0, . . . , 2k − 1}
and, hence, maxm∈{0,...,2k−1} |x2k+m| < ε. Thus,

P
(

lim
n→∞

Xn = 0
)
≤ P

(
lim
k→∞

max
m∈{0,...,2k−1}

X2k+m = 0
)

= P
(

lim
k→∞

max
m∈{0,...,2k−1}

1Z∈[m2−k,(m+1)2−k) = 0
)
= P(Z = 1) = 0,

where we used that for all z ∈ [0, 1) we have maxm∈{0,...,2k−1} 1z∈[m2−k,(m+1)2−k) = 1. This shows

that Xn
a.s.↛ 0.
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3. Exercise

Let (Xn)n≥1 be a sequence of random variables such that Xn
P−→ c for some constant c ∈ R. Show that we also

have that Xn
L−→ c.

Solution:

Let g be a continuous and bounded function on R. We want to show that E[g(Xn)] → E[g(c)] = g(c) as
n → ∞. Let ε > 0. We have that

E[|g(Xn)− g(c)|] = E[|g(Xn)− g(c)|1|Xn−c|>ε] + E[|g(Xn)− g(c)|1|Xn−c|≤ε] =: A+B.

Since g is continuous at c, it follows that for all η > 0 there exists a > 0 such that |x − c| ≤ a implies
|g(x)− g(c)| ≤ η. For ε = a, we have B ≤ ηP(|Xn − c| ≤ ε) ≤ η. Also,

A ≤ 2 sup
t∈R

|g(t)| E[1|Xn−c|>a] = 2 sup
t∈R

|g(t)| P(|Xn − c| > a).

Thus,
E[|g(Xn)− g(c)|] ≤ η + 2 sup

t∈R
|g(t)| P(|Xn − c| > a)

and, hence, lim supn→∞ E[|g(Xn) − g(c)|] ≤ η, using the assumption that Xn
P−→ c. Since η > 0 was

arbitrary, it follows that lim supn→∞ E[|g(Xn)− g(c)|] = 0, which implies limn→∞ E[g(Xn)] = g(c).

4. Exercise

Let (Xn)n≥1 be a sequence of random variables such that Xn ∼ Bin(n, λ/n) for some λ ∈ (0,∞) and integer
n > λ.

(a) For a fixed integer k ≥ 0 and n large enough, write down P(Xn = k).

(b) Show that limn→∞ P(Xn = k) = e−λλk/k! for all k ∈ {0, 1, . . . }.
(c) Show that if (Xn)n≥1 is a sequence of random variables and X is a random variable with Xn ∈ {0, 1, . . . }

and X ∈ {0, 1, . . . }, then

Xn
L−→ X ⇐⇒ P(Xn = k)

n→∞−−−−→ P(X = k) ∀ k ∈ {0, 1, . . . }.

(d) What do you conclude from (b)?

Solution:

(a) For n ≥ k, we have that P(Xn = k) =
(
n
k

) (
λ
n

)k (
1− λ

n

)n−k
.

(b) We have

P(Xn = k) =
n!

k!(n− k)!

(
λ

n

)k (
1− λ

n

)n (
1− λ

n

)−k

=
n(n− 1) · · · · · (n− k + 1)

nk

(
1− λ

n

)−k

︸ ︷︷ ︸
→1 as n→∞

λk

k!

(
1− λ

n

)n
n→∞−−−−→ λk

k!
e−λ.

(c) Suppose P(Xn = k)
n→∞−−−−→ P(X = k) for all k ∈ {0, 1, . . . } and let x be a point of continuity of the cdf
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of X. In the following, we write FXn and FX for the cdfs of Xn and X, respectively. Then,

FXn
(x) =

[x]∑
k=0

P(Xn = k)
n→∞−−−−→

[x]∑
k=0

P(X = k) = FX(x),

where [x] is the integer part of x. Hence, Xn
L−→ X.

Now, suppose Xn
L−→ X. Then, for all k ∈ {0, 1, . . . } and x ∈ (k, k + 1), FXn(x)

n→∞−−−−→ FX(x). Thus,

FXn
(k + 1/2)

n→∞−−−−→ FX(k + 1/2). But FXn
(k + 1/2) = FXn

(k) and FX(k + 1/2) = FX(k), which

implies FXn
(k)

n→∞−−−−→ FX(k). Hence,

P(Xn = k) = FXn
(k)− FXn

(k − 1)
n→∞−−−−→ FX(k)− FX(k − 1) = P(X = k)

for all k ∈ {1, 2, . . . } and

P(Xn = 0) = FXn
(0)

n→∞−−−−→ FX(0) = P(X = 0).

(d) That Bin(n, λ/n)
L−→ Pois(λ).

5. Exercise

It costs one dollar to play a certain slot machine in Las Vegas. The machine is set by the house to pay two
dollars with probability 0.45 and pay nothing with probability 0.55. Let Xi = the house’s net winning on the
ith play of the machine and let Sn =

∑n
i=1 Xi be the house’s winning after n plays. We assume that X1, . . . , Xn

are independent.

(a) Find E[Sn].

(b) Find Var(Sn).

(c) Use the normal approximation to approximately compute P(800 < S10000 ≤ 1100).

Solution:

(a) E[Sn] = nE[X1] = n((−1) · 0.45 + 1 · 0.55) = 0.1n. Note that we do not use independence when
computing E[Sn].

(b) We have

Var(Sn) = nVar(X1) = nE[(X1 − 0.1)2]

= n((−1− 0.1)2 · 0.45 + (1− 0.1)2 · 0.55) = 0.99n.

(c) With n = 10000 and Zn = Sn−E[Sn]√
Var(Sn)

, we have

P(800 < Sn ≤ 1100) = P
(
800− 0.1 · 10000√

0.99 · 10000
< Zn ≤ 1100− 0.1 · 10000√

0.99 · 10000

)
≈ Φ(1.005)− Φ(−2.01) ≈ 0.82

with Φ the cdf of N (0, 1).
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