Sheet 8

Due: To be handed in before 05.05.2023 at 12:00.

1. Exercise

Let X_1, \ldots, X_n be i.i.d. $\sim \mathcal{N}(0, \sigma^2)$ with $\sigma \in \Theta = (0, \infty)$. We are interested in estimating the variance σ^2 . Here, $n \geq 2$.

(a) Show that the estimator

$$\tilde{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

is an unbiased estimator of σ^2 such that $\tilde{\sigma}_n^2 \xrightarrow{a.s.} \sigma^2$ as $n \to \infty$.

- (b) Let $X \sim \mathcal{N}(\mu, \sigma^2)$ for $\mu \in \mathbb{R}$, $\sigma \in (0, \infty)$. Show that $\mathbb{E}[(X \mu)^4] = 3\sigma^4$ and deduce the expression of $\text{Var}((X \mu)^2)$.
- (c) Compute the mean square error of $\tilde{\sigma}_n^2$.
- (d) Consider now the usual empirical estimator

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Admitting that

$$\operatorname{Var}_{\sigma}\left(\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\bar{X}_{n})^{2}\right)=\frac{2(n-1)}{n^{2}}\sigma^{4}$$

if X_1, \ldots, X_n are i.i.d. $\sim \mathcal{N}(\mu, \sigma^2)$, compute $\mathrm{MSE}_{\sigma}(S_n^2)$.

(e) How do you explain that $MSE_{\sigma}(S_n^2) > MSE_{\sigma}(\tilde{\sigma}_n^2)$?

2. Exercise

- (a) Let X_1, \ldots, X_n be i.i.d. $\sim \mathcal{U}([0, \theta])$ with $\theta \in \Theta = (0, \infty)$. We consider the following estimators of θ .
 - (i) $T_1(X_1, ..., X_n) = 2\bar{X}_n$.
 - (ii) $T_2(X_1, \dots, X_n) = \max_{1 \le i \le n} X_i$.
 - (iii) $T_3(X_1, ..., X_n) = \frac{n+1}{n} \max_{1 \le i \le n} X_i$.

Compute the mean square error of each of the estimators and indicate whether they are unbiased or not.

Hint: Revisit exercises 3b) and 4c) from sheet number 5.

(b) Which estimator would you use?

FS 2023