Sheet 9

Due: To be handed in before 05.05.2023 at 12:00.

1. Exercise

Let X_{1}, \ldots, X_{n} be i.i.d. random variables $\sim \operatorname{Bernoulli}\left(\theta_{0}\right)$ for some unknown $\theta_{0} \in \Theta=(0,1)$.
(a) Show that the moment estimator of θ_{0} is \bar{X}_{n}.
(b) Using the Central Limit Theorem, state the asymptotic distribution of $\hat{\theta}$.
(c) Using the weak law of large numbers and Slutsky's theorem, find a bilateral and symmetric confidence interval for θ_{0} of asymptotic level equal to 95%.

Solution:

(a) For $\theta \in \Theta, \mu_{1}(\theta)=\mathbb{E}_{\theta}[X]=\theta$ if $X \sim P_{\theta}$ and P_{θ} is the distribution of Bernoulli (θ). Then, replacing the theoretical first moment by its empirical (or sample) version, we get $\hat{\theta}=\bar{X}_{n}$.
(b) Since $X \sim \operatorname{Bernoulli}\left(\theta_{0}\right)$ has $\operatorname{Var}_{\theta_{0}}(X)<\infty$, it follows from the CLT that

$$
\frac{\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)}{\sqrt{\theta_{0}\left(1-\theta_{0}\right)}}=\frac{\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)}{\sqrt{\operatorname{Var}_{\theta_{0}}(X)}} \xrightarrow[\rightarrow]{d} Z \sim \mathcal{N}(0,1) .
$$

(c) By the WLLN, we have $\bar{X}_{n} \xrightarrow{\mathbb{P}} \theta_{0}$. By the continuous mapping theorem (lecture), we have

$$
\sqrt{\frac{\theta_{0}\left(1-\theta_{0}\right)}{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}} \stackrel{\mathbb{P}}{\rightarrow} 1
$$

This follows from continuity of the function $f(x)=\sqrt{\frac{\theta_{0}\left(1-\theta_{0}\right)}{x(1-x)}}, x \in(0,1)$. Thus,

$$
\frac{\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)}{\sqrt{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}}=\frac{\sqrt{n}\left(\bar{X}_{n}-\theta_{0}\right)}{\sqrt{\theta_{0}\left(1-\theta_{0}\right)}} f\left(\bar{X}_{n}\right) \xrightarrow{d} Z
$$

by Slutsky's theorem. For any $\alpha \in(0,1)$, let $z_{1-\alpha / 2}$ be the $(1-\alpha / 2)$-quantile of $\mathcal{N}(0,1)$. Then,
equivalently

$$
\mathbb{P}\left(\theta_{0} \in\left[\bar{X}_{n}-\frac{z_{1-\alpha / 2}}{\sqrt{n}} \sqrt{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}, \bar{X}_{n}+\frac{z_{1-\alpha / 2}}{\sqrt{n}} \sqrt{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}\right]\right) \approx 1-\alpha .
$$

If $\alpha=0.95$, then $z_{1-\alpha / 2}=z_{0.975} \approx 1.96$ and

$$
\left[\bar{X}_{n}-\frac{1.96}{\sqrt{n}} \sqrt{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}, \bar{X}_{n}+\frac{1.96}{\sqrt{n}} \sqrt{\bar{X}_{n}\left(1-\bar{X}_{n}\right)}\right]
$$

is a bilateral symmetric confidence interval for θ_{0} of asymptotic level $\approx 95 \%$.

2. Exercise

Let X_{1}, \ldots, X_{n} be i.i.d. $\sim \mathcal{U}\left(0, \theta_{0}\right)$ for some $\theta_{0} \in \Theta=(0, \infty)$. For $X \sim \mathcal{U}\left(0, \theta_{0}\right)$, we adopt the following expression for the density: $p_{\theta}(x)=\frac{1}{\theta} \mathbb{1}_{0 \leq x \leq \theta}$.
(a) Write the likelihood based on the sample $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)$ and show that the MLE is $\hat{\theta}=\max _{1 \leq i \leq n} X_{i}$.
(b) Show that $\hat{\theta} \xrightarrow{\mathbb{P}} \theta_{0}$.

Hint: We can first show that $\mathbb{E}_{\theta_{0}}\left[\left|\hat{\theta}-\theta_{0}\right|\right] \rightarrow 0$ as $n \rightarrow \infty$.

Solution:

(a) We have

$$
L_{\mathbb{X}}(\theta)=\frac{1}{\theta^{n}} \prod_{i=1}^{n} \mathbb{1}_{0 \leq X_{i} \leq \theta}=\frac{1}{\theta^{n}} \prod_{i=1}^{n} \mathbb{1}_{0 \leq X_{i}} \mathbb{1}_{X_{i} \leq \theta}=\frac{1}{\theta^{n}} \mathbb{1}_{0 \leq \min _{i} X_{i}} \mathbb{1}_{\max _{i} X_{i} \leq \theta}
$$

Then, maximizing $\theta \mapsto L_{\mathbb{X}}(\theta)$ is equivalent to maximizing the function $\theta \mapsto \frac{1}{\theta^{n}} \mathbb{1}_{\max _{i} X_{i} \leq \theta \text {. This shows }}$ clearly that $\hat{\theta}=\max _{1 \leq i \leq n} X_{i}$ is the MLE.
(b) First, note that $\hat{\theta} \leq \theta_{0}$ almost surely. Indeed,

$$
\mathbb{P}_{\theta_{0}}\left(\hat{\theta}>\theta_{0}\right)=\mathbb{P}_{\theta_{0}}\left(\exists i \in\{1, \ldots, n\}: X_{i}>\theta_{0}\right) \leq \sum_{i=1}^{n} \mathbb{P}_{\theta_{0}}\left(X_{i}>\theta_{0}\right)=n \mathbb{P}_{\theta_{0}}\left(X_{1}>\theta_{0}\right)=0 .
$$

Then,

$$
\mathbb{E}_{\theta_{0}}\left[\left|\hat{\theta}-\theta_{0}\right|\right]=\mathbb{E}_{\theta_{0}}\left[\theta_{0}-\hat{\theta}\right]=\theta_{0}\left(1-\mathbb{E}_{\theta_{0}}\left[\frac{\hat{\theta}}{\theta_{0}}\right]\right) .
$$

We have seen that $\frac{X_{1}}{\theta_{0}}, \ldots, \frac{X_{n}}{\theta_{0}}$ are i.i.d. $\sim \mathcal{U}(0,1)$ and that $\max _{1 \leq i \leq n} \frac{X_{i}}{\theta_{0}} \sim \operatorname{Beta}(n, 1)$. Thus,

$$
\mathbb{E}_{\theta_{0}}\left[\max _{1 \leq i \leq n} \frac{X_{i}}{\theta_{0}}\right]=\frac{n}{n+1} .
$$

It follows that $1-\mathbb{E}_{\theta_{0}}\left[\hat{\theta} / \theta_{0}\right]=1-\frac{n}{n+1}=\frac{1}{n+1} \rightarrow 0$. Now, by Markov's inequality,

$$
\mathbb{P}_{\theta_{0}}\left(\left|\hat{\theta}-\theta_{0}\right|>\varepsilon\right) \leq \frac{1}{\varepsilon} \mathbb{E}_{\theta_{0}}\left[\left|\hat{\theta}-\theta_{0}\right|\right] \rightarrow 0
$$

for all $\varepsilon>0$, hence $\hat{\theta} \xrightarrow{\mathbb{P}} \theta_{0}$.

