Exercise Sheet 1

Algebraic Topology II

09.03.2023

Q1 Consider the space $X := \Delta^n / \partial \Delta^n$ for $n \ge 0$. Denote by $* \in X$ the point corresponding to $\partial \Delta^n$. The quotient map $\sigma_n : \Delta \to X$, viewed as a singular *n*-simplex, is a cycle in $S_n(X, *)$.

- (a) Show that $[\sigma_n]$ generates $H_n(X, *; \mathbb{Z}) \cong \widetilde{H}_n(X; \mathbb{Z}) \cong \mathbb{Z}$.
- (b) Let G be an abelian group. Then for all $g \in G$, $g \cdot \sigma_n$ is a cycle in $S_n(X, *; G)$. Show that the map

$$G \to H_n(X, *; G), g \mapsto [g \cdot \sigma_n]$$

is an isomorphism.

Q2 Let $\pi: X \to Y$ be a 2:1 covering. Recall the short exact sequence of chain complexes

$$0 \to S_{\bullet}(Y, \mathbb{Z}_2) \xrightarrow{T} S_{\bullet}(X; \mathbb{Z}_2) \xrightarrow{\pi_c} S_{\bullet}(Y; \mathbb{Z}_2) \to 0$$

and its associated long exact sequence in homology. These sequences are called the Gysin sequence. Show that

- (a) $T \circ \pi_c = \mathrm{id} + \Theta_c$, where $\Theta : X \to X$ is the unique non-trivial desk transformation of π .
- (b) Assume that $H_i(X, \mathbb{Z}_2) = \mathbb{Z}_2$ for some *i*. Show that $T_* \circ \pi_* = 0$ in degree *i*.

Q3 Suppose that you know $H_k(\mathbb{R}P^n, \mathbb{Z}_2) = 0$ for all k > n. Use the Gysin sequence for this covering to compute $H_k(\mathbb{R}P^n; \mathbb{Z}_2)$ for $0 \le k \le n$.

Q4 Show that $\mathbb{R}P^2$ is not a retract of $\mathbb{R}P^3$.

Q5 Use Borsuk-Ulam to prove that whenever there exists a map $\phi: S^n \to S^m$ which is equivariant with respect to the antipodal maps, then $n \leq m$.

Q6 Does the Borsuk-Ulam hold for the torus? In other words, for every map $f: S^1 \times S^1 \to \mathbb{R}^2$ must there exists $(x, y) \in S^1 \times S^1$ such that f(x, y) = f(-x, -y)?

Q7 Consider $\mathbb{R}P^k = S^k/(x \sim -x)$ and denote by $q: S^k \to \mathbb{R}P^k$ the quotient map. View $\mathbb{R}P^{k-1}$ as a subspace of $\mathbb{R}P^k$ as follows: let $S_{E_q}^{k-1} \subset S^k$ be the equator

$$S_{E_q}^{k-1} = \{(x_1, \cdots, x_{k+1}) \in S^k : x_{k+1} = 0\} \subset S^k.$$

Then $q(S_{E_q}^{k-1}) \subset \mathbb{R}P^k$ is homeomorphic to $\mathbb{R}P^{k-1}$. Consider the space $\mathbb{R}P^k/\mathbb{R}P^{k-1}$ and the quotient map $q': \mathbb{R}P^k \to \mathbb{R}P^k/\mathbb{R}P^{k-1}$. Denote by

$$B_{+}^{k} := \{ (x_{1}, \cdots, x_{k+1}) \in S^{k} : x_{k+1} \ge 0 \} \subset S^{k}$$

the closed upper hemisphere and similarly by B^k_- the closed lower hemisphere.

(a) Show that there exists a homeomorphism $\phi : \mathbb{R}P^k / \mathbb{R}P^{k-1} \to S^k$ such that the composition of maps

$$f := \left(S^k \xrightarrow{q} \mathbb{R}P^k \xrightarrow{q'} \mathbb{R}P^k / \mathbb{R}P^{k-1} \xrightarrow{\phi} S^k \right)$$

sends each open hemisphere $\operatorname{Int}(B^k_+) \subset S^k$ homeomorphically onto $S^k \setminus \{\operatorname{point}\}$.

- (b) Show that $\deg(f) = \pm (1 + (-1)^{k-1})$. (The \pm depends on the choice of ϕ .) Hint: Use local degrees.
- (c) Consider the space

$$\mathbb{R}P^k \cup_{h_\partial} B^{k+1}$$

where the attaching map $h_{\partial}: \partial B^{k+1} = S^k \to \mathbb{R}P^k$ is the quotient map q. Show that there exists a homeomorphism

$$(\mathbb{R}P^k \cup_{h_{\partial}} B^{k+1}, \mathbb{R}P^k) \approx (\mathbb{R}P^{k+1}, \mathbb{R}P^k)$$

which is the identity on $\mathbb{R}P^k$.

(d) Endow $\mathbb{R}P^n$ with the structure of an *n*-dimensional CW-complex X with one *j*-cell in each dimension $0 \le j \le n$, as follows:

$$X^{(0)} = \mathbb{R}P^0 = 1 \text{ point},$$

$$\cdots$$

$$X^{(k)} \approx \mathbb{R}P^k,$$

$$X^{(k+1)} \approx \mathbb{R}P^k \cup_{h_\partial} B^{k+1} \approx \mathbb{R}P^{k+1},$$

$$\cdots$$

$$X^{(n)} \approx \mathbb{R}P^{n-1} \cup_{h_\partial} B^n \approx \mathbb{R}P^n.$$

(e) Consider the cellular chain complex $C^{CW}_{\bullet}(X)$ of the CW-complex described in (d). Denote by $e^{(k)}$ the generator of $C^{CW}_k(X)$, corresponding to the k-dimensional cell, so that $C^{CW}_k(X) = \mathbb{Z}e^{(k)}$. Calculate the differential $d: C^{CW}_{k+1}(X) \to C^{CW}_k(X)$.