# Exercise Sheet 1 

Algebraic Topology II

09.03.2023

Q1 Consider the space $X:=\Delta^{n} / \partial \Delta^{n}$ for $n \geq 0$. Denote by $* \in X$ the point corresponding to $\partial \Delta^{n}$. The quotient map $\sigma_{n}: \Delta \rightarrow X$, viewed as a singular $n$-simplex, is a cycle in $S_{n}(X, *)$.
(a) Show that $\left[\sigma_{n}\right]$ generates $H_{n}(X, * ; \mathbb{Z}) \cong \widetilde{H}_{n}(X ; \mathbb{Z}) \cong \mathbb{Z}$.
(b) Let $G$ be an abelian group. Then for all $g \in G, g \cdot \sigma_{n}$ is a cycle in $S_{n}(X, * ; G)$. Show that the map

$$
G \rightarrow H_{n}(X, * ; G), g \mapsto\left[g \cdot \sigma_{n}\right]
$$

is an isomorphism.

Q2 Let $\pi: X \rightarrow Y$ be a 2:1 covering. Recall the short exact sequence of chain complexes

$$
0 \rightarrow S_{\bullet}\left(Y, \mathbb{Z}_{2}\right) \xrightarrow{T} S_{\bullet}\left(X ; \mathbb{Z}_{2}\right) \xrightarrow{\pi_{c}} S_{\bullet}\left(Y ; \mathbb{Z}_{2}\right) \rightarrow 0
$$

and its associated long exact sequence in homology. These sequences are called the Gysin sequence.
Show that
(a) $T \circ \pi_{c}=\mathrm{id}+\Theta_{c}$, where $\Theta: X \rightarrow X$ is the unique non-trivial desk transformation of $\pi$.
(b) Assume that $H_{i}\left(X, \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$ for some $i$. Shwo that $T_{*} \circ \pi_{*}=0$ in degree $i$.

Q3 Suppose that you know $H_{k}\left(\mathbb{R} P^{n}, \mathbb{Z}_{2}\right)=0$ for all $k>n$. Use the Gysin sequence for this covering to compute $H_{k}\left(\mathbb{R} P^{n} ; \mathbb{Z}_{2}\right)$ for $0 \leq k \leq n$.

Q4 Show that $\mathbb{R} P^{2}$ is not a retract of $\mathbb{R} P^{3}$.

Q5 Use Borsuk-Ulam to prove that whenever there exists a map $\phi: S^{n} \rightarrow S^{m}$ which is equivariant with respect to the antipodal maps, then $n \leq m$.

Q6 Does the Borsuk-Ulam hold for the torus? In other words, for every map $f: S^{1} \times S^{1} \rightarrow \mathbb{R}^{2}$ must there exists $(x, y) \in S^{1} \times S^{1}$ such that $f(x, y)=f(-x,-y)$ ?

Q7 Consider $\mathbb{R} P^{k}=S^{k} /(x \sim-x)$ and denote by $q: S^{k} \rightarrow \mathbb{R} P^{k}$ the quotient map. View $\mathbb{R} P^{k-1}$ as a subspace of $\mathbb{R} P^{k}$ as follows: let $S_{E_{q}}^{k-1} \subset S^{k}$ be the equator

$$
S_{E_{q}}^{k-1}=\left\{\left(x_{1}, \cdots, x_{k+1}\right) \in S^{k}: x_{k+1}=0\right\} \subset S^{k}
$$

Then $q\left(S_{E_{q}}^{k-1}\right) \subset \mathbb{R} P^{k}$ is homeomorphic to $\mathbb{R} P^{k-1}$. Consider the space $\mathbb{R} P^{k} / \mathbb{R} P^{k-1}$ and the quotient $\operatorname{map} q^{\prime}: \mathbb{R} P^{k} \rightarrow \mathbb{R} P^{k} / \mathbb{R} P^{k-1}$. Denote by

$$
B_{+}^{k}:=\left\{\left(x_{1}, \cdots, x_{k+1}\right) \in S^{k}: x_{k+1} \geq 0\right\} \subset S^{k}
$$

the closed upper hemisphere and similarly by $B_{-}^{k}$ the closed lower hemisphere.
(a) Show that there exists a homeomorphism $\phi: \mathbb{R} P^{k} / \mathbb{R} P^{k-1} \rightarrow S^{k}$ such that the composition of maps

$$
f:=\left(S^{k} \xrightarrow{q} \mathbb{R} P^{k} \xrightarrow{q^{\prime}} \mathbb{R} P^{k} / \mathbb{R} P^{k-1} \xrightarrow{\phi} S^{k}\right)
$$

sends each open hemisphere $\operatorname{Int}\left(B_{ \pm}^{k}\right) \subset S^{k}$ homeomorphically onto $S^{k} \backslash\{$ point $\}$.
(b) Show that $\operatorname{deg}(f)= \pm\left(1+(-1)^{k-1}\right)$. (The $\pm$ depends on the choice of $\phi$.) Hint: Use local degrees.
(c) Consider the space

$$
\mathbb{R} P^{k} \cup_{h_{\partial}} B^{k+1}
$$

where the attaching map $h_{\partial}: \partial B^{k+1}=S^{k} \rightarrow \mathbb{R} P^{k}$ is the quotient map $q$. Show that there exists a homeomorphism

$$
\left(\mathbb{R} P^{k} \cup_{h_{\partial}} B^{k+1}, \mathbb{R} P^{k}\right) \approx\left(\mathbb{R} P^{k+1}, \mathbb{R} P^{k}\right)
$$

which is the identity on $\mathbb{R} P^{k}$.
(d) Endow $\mathbb{R} P^{n}$ with the structure of an $n$-dimensional CW-complex $X$ with one $j$-cell in each dimension $0 \leq j \leq n$, as follows:

$$
\begin{aligned}
& X^{(0)}=\mathbb{R} P^{0}=1 \text { point } \\
& \cdots \\
& X^{(k)} \approx \mathbb{R} P^{k}, \\
& X^{(k+1)} \approx \mathbb{R} P^{k} \cup_{h_{\partial}} B^{k+1} \approx \mathbb{R} P^{k+1}, \\
& \cdots \\
& X^{(n)} \approx \mathbb{R} P^{n-1} \cup_{h_{\partial}} B^{n} \approx \mathbb{R} P^{n}
\end{aligned}
$$

(e) Consider the cellular chain complex $C_{\bullet}^{C W}(X)$ of the CW-complex described in (d). Denote by $e^{(k)}$ the generator of $C_{k}^{C W}(X)$, corresponding to the $k$-dimensional cell, so that $C_{k}^{C W}(X)=\mathbb{Z} e^{(k)}$. Calculate the differential $d: C_{k+1}^{C W}(X) \rightarrow C_{k}^{C W}(X)$.

