Exercise Sheet 4

Algebraic Topology II

15.05.2023

Q1 Let M, N be topological manifolds. Show that $M \times N$ is orientable if and only if M and N are both orientable.

Q2 Show that every covering space of an orientable manifold is an orientable manifold.

Q3 Show that for any connected closed orientable *n*-manifold M there is a map $f: M \to S^n$ of degree 1, i.e. it sends the fundamental class of M to the fundamental class of S^n .

 ${\bf Q4}$ Find an orientable two-sheeted covering space of the Klein bottle. Which well-known space do you get?

Q5 (1) Show that $(\alpha \cap \varphi) \cap \psi = \alpha \cap (\varphi \cup \psi)$ for all $\alpha \in C_*(X; R)$, $\varphi, \psi \in C^*(X; R)$. Deduce that the cap product makes $H_*(X; R)$ a right $H^*(X; R)$ -module.

(2) Compute the module structure explicitly for X being an orientable surface of genus g and $R = \mathbb{Z}$. Do the same for X the Klein bottle.