AUGMENTATION

Let X path connected, xoe X. then the augmentation is the map $\mathcal{E}_{x}: S.(x) \rightarrow S.(x)$, defined by $\mathcal{E}_{X} \equiv 0$ om $S_{i}(x) \forall i > 0$ and $\mathcal{E}_{X_{o}}\left(\sum_{x\in X}n_{x}x\right) = \left(\sum_{x\in X}n_{x}\right)X_{o}$ Ex, is a chain map. LEMMA (CONE CONSTRUCTION) Assume X is contractible. Fix X_EX. then I a chain homotopy $D = D_{X_1 X_0}$; $S_0(x) \rightarrow S_0(x) [1]$ s.t. $D = id - E_x$ (in particular, $H_{\lambda}(X) = 0 \quad \forall \lambda = 0$

NOTATION

For a chain complex C. denote by CEd] the same complex, but with a shift in degree

(CEQJ) := Citd and the same boundary map, If D' is cohomologically graded (DEd)=D. PROOF D is constructed using a cone-construction and a homotopy $F: X \times [0, \Pi \rightarrow X \text{ with } F(x, p) = X,$ $F(x, 1) = x_{o} \forall x \in X.$ Recall that one canonical construction of the n-simplex is as the set of points $\Delta_n = \left\{ \begin{array}{l} \sum_{i=1}^n t_i e_i \\ \sum_{i=1}^n t_i \\ \sum_{i=1}^n t_i$ $\subseteq \mathbb{R}^{n+1}$

where Ees, eng is the standard basis in Rn+1. With this description we can

regard (to, t1, ..., tn) as 'coordinates' Δ_n . In particular, the faces of Δ_n are given by $it_i = 0$, i = 0, ..., n and the vertices are given by 2t, =1'g Given a singular n-simplex $G:\Delta_n \rightarrow X$, we define $D(\mathcal{E})(t_{0},..,t_{n+1}) = F(\mathcal{E}((\frac{t_{1},..,t_{n+1}}{1-t_{0}}),t_{0}):\Delta_{n+1} \longrightarrow X$ Observe that the face $D_n \cong \{t_0 = 0\} \subset D_{n+1}$ is mapped onto 2(Dn) and the vertex Eto = 1 g is mapped onto the contraction point Xo. If & has degree 21 one can check that (56)D - 5 = (5)D6and if 3 has degree 0, then - 2=(2)de where we identify to and the O-simplex with Image XOEX thus

3 - 101 = 60 + 06

where E is 0 in nonzero degrees and $\mathcal{E}(\sum_{i} n_i \mathcal{G}_i) = \sum_{i} n_i \mathcal{X}_o$ can be identified with the augmentation map in degree 0. THEOREM F chain map $\Theta: S.(X \times Y) \rightarrow S.(X) \otimes S.(Y),$ defined 4 spaces X, Y, which is natural in X&Y and S.t. in degree O we have; $\forall x \in X, y \in Y, \quad \Theta((x, y)) = x \otimes y$. Naturality means: $\forall maps \quad X \xrightarrow{f} x',$ $Y \xrightarrow{g} Y'$ we have a commutative diagram $S_{c}(x \times y) \xrightarrow{\Theta} S_{c}(x) \otimes S_{c}(y)$ $(f \times g)_{c} \qquad \downarrow \qquad f_{c} \otimes g_{c}$ S. $(x'xY') \xrightarrow{\omega} S.(x') \otimes S.(Y')$

Additionally, $\partial \otimes \Theta = \Theta \partial$.

LEMMA Let X,Y be contractible spaces, $x \in X, y \in Y$. then \exists a chain homotopy $E: S.(x) \otimes S(Y) \rightarrow (S(x) \otimes S(Y))E1$ between $E_{x, \otimes} E_{y}$, and id $\otimes id$. In particular,

 $H_{N}\left(S_{n}(x) \otimes S_{n}(1)\right) = 0 \quad \forall n \ge 1$

and $\forall 0$ -chain $Zn_{x,y} \times \otimes y$ we have $Zn_{xy}[X \otimes y] = (Zn_{xy})[X_0 \otimes y_0]$.

EXERCISE Let $A, \stackrel{f'}{\rightarrow} A, ', A, \stackrel{f''}{\rightarrow} A, ', B, \stackrel{g'}{\rightarrow} B, ', B, \stackrel{g'}{\rightarrow} B, B, ', B, \stackrel{g''}{\rightarrow} B, '$ be graded homo. Consider homomorphisms $(f'', f') \otimes (g'', g') \otimes (f' \otimes g'') \otimes (f' \otimes g') \otimes (f' \otimes g'$ PROOF

We'll use the chain homotopies D_x & Dy between id_{s(x)} & E_{xo} and id s(y) & Ey, Coming from the fact that X&Y are contractible. E:= Dx Qid + Exo Dy. Recall the diff. d on $S_{x}(x) \otimes S_{x}(x)$ d = dx @ id + id @ dy (we use the Koszul sign convention) $Ed + dE = (D_X \otimes id + \mathcal{E}_{X_o} \otimes D_y) \circ (\partial_X \otimes id + id \otimes \partial_y)$ + $(\partial_x \otimes Id + Id \otimes \partial_y) \circ (D_x \otimes Id + \mathcal{E}_x \otimes D_y)$ $= (D_{x} \cdot \partial_{x}) \otimes id + D_{x} \otimes \partial_{y} - (\mathcal{E}_{x} \cdot \partial_{x}) \otimes D_{y}$ + $\mathcal{E}_{X_{o}} \otimes (\mathcal{D}_{y} \cdot \partial_{y}) + (\partial_{x} \cdot \mathcal{D}_{x}) \otimes \operatorname{id}^{+} (\partial_{x} \cdot \mathcal{E}_{x_{o}}) \otimes \mathcal{D}_{y}$ $- D_{x} \otimes \partial_{y} + \mathcal{E}_{x_{o}} \otimes (\partial_{y} \circ D_{y}) = (id - \mathcal{E}_{x_{o}}) \otimes id$ $+ \mathcal{E}_{x_{\infty}} \otimes (ui - \mathcal{E}_{y_{\infty}}) = uid \otimes id - \mathcal{E}_{x_{\infty}} \otimes id$ $+ \mathcal{E}_{x_o} \otimes id - \mathcal{E}_{x_o} \otimes \mathcal{E}_{y_o} =$

It follows that id \otimes id and $E_{x_0} \otimes E_{y_0}$ induce the same maps on homology groups. Since E_{x_0} is 0 in all degrees but $0, H_1(S.(x) \otimes S.(1)=0)$ $\forall \overline{u} > 0, \text{ In degree 0 we get } (E_{x_0} \otimes E_{y_0})_* = (id)_*, \text{ so}$ $Z n_{xy} [x \otimes y] = (Z n_{xy}) [x_0 \otimes y_0]$.