ALGEBRAIC TOPOLOGY 2
Overview:

- homology with coefficients : $H_{*}(x ; G)$
- cohomology : $H^{*}(x ; G)$
- relation between $H_{*}(x ; G) \& H_{*}(x) \otimes G^{2}$.
- algebraic operations on $H_{*} \& H^{*}$
- Manifolds, Poincare duality

TENSOR PRODUCT (crash course)
Good references: Atiyah-McDonald Commutative Algebra
Serge Lang Algebra
bilinear algebra \rightarrow linear algebra
DEFINITION
Let R be a commutative ring with unity.
Let u, w be R-modules. A TENSOR PRODUCT of $u \& v($ over R) is a R-module T
together with a bilinear map (over R)
$t: u \times v \rightarrow T$ sit. $\forall R$-module
$W \& \forall$ bilinear map $f: u \times v \rightarrow W$
7 a unique homomorphism
$\bar{f}: T \rightarrow W$ st. $\bar{f} \circ t \cdot f$.

LEMMA
If T exists, then it is unique up to isomorphwom in the sense that If $t^{\prime}: U \times V \rightarrow T^{\prime}$ is also a tensor product of $u \& v$ then J ! an iso.

$$
h: T^{\prime} \rightarrow T \text { st } \tau=h_{0} \tau^{\prime} .
$$

Exercise
THEOREM
\forall R-modules $u \& v$, a tensor product of u and v exists.

Proof
Let M be the free R-module generated by all the pairs (u, v) with $u \in u, v \in V$.
Let NCM be the submodule generated by the following elements

$$
\left\{\begin{array}{l}
(u+u, v)-(u, v)-(u, v) \\
\left(u, v+v^{\prime}\right)-(u, v)-\left(u, v^{\prime}\right) \\
(a, v)-a(u, v) \\
(u, a v)-a(u, v)
\end{array}\right\} \begin{aligned}
& u, v^{\prime} \in u \\
& v, v^{\prime} \in v \\
& a \in R
\end{aligned}
$$

Put $T:=M / N$.
We have an injection of sets $i: u \times v \rightarrow M$. Define

$$
t=(u \times v \stackrel{i}{\rightarrow} M \rightarrow M / N)
$$

Exercise: check that τ is a bilinear map. Let $f: u \times v \rightarrow W$ be a bilinear map. Since M is free, we have a map $\tilde{f}: M \rightarrow W$ s.t. the diagram

commutes. Since f is bilinear, $\left.f\right|_{N} \equiv 0$. Let $\underset{\sim}{f}: M / N \rightarrow W$ be the map induced by \tilde{f}.

So we have.

ill.

Note that $\operatorname{lm} \tau$ generates $T=M / N$.
(WARNING: t is generally not surjective) Now \bar{f} is determined by f on every element is int. As int generate T, we get that \bar{f} is unique.

Notation:
We unite $U \otimes_{R} V$ for T. If R is 'clear' from the context, we write $u \otimes v$. we write $u \otimes v:=t(u, v), u \in U, v \in v$.

IMPORTANT: $\forall x \in U \otimes v$ can be written as $x=\sum_{i_{i j}} u_{i} \otimes v_{j}$ with $u_{i} \in U, v_{j} \in V$. But, not $\forall x \in U \oplus v$ is of the type $u \otimes v$.
Remark $a u \otimes v=u \otimes a v \quad \forall u \in U$, $\forall v \in V$, $\forall a \in \mathbb{R}$
Tensor products wee hard to calculate from definitions. We often use the properties. BASIC PROPERTIES
(1) $u \otimes v \cong v \otimes U$ via a unique vo. which satisfied $b(u \otimes v)=v \otimes u$.
(2) $(u \otimes v) \otimes w \cong u \otimes(v \otimes w)$ via an iso that satisfies $(u \otimes v) \otimes w \longmapsto u \otimes(v \otimes w)$.
(3) $u \otimes R \cong R \otimes u \cong u$.
(4) $\left(\underset{i \in I}{\oplus} u_{i}\right) \otimes v \cong \underset{i \in F}{\oplus} u_{i} \otimes v$
(5) If $u \& v$ are free R-modules, then so is $u \neq v$ and

$$
\operatorname{rank}(u \neq v)=\operatorname{rank} u \cdot \operatorname{rank} v .
$$

Furthermore, if $\left\{u_{i}\right\}_{i \in I}$ is a basis of u and $\left\{v_{j}\right\}_{j e J}$ is a basis for v, then $\left\{u_{i} \otimes v_{j}\right\}_{i \in I, j \in J}$ is
a basis of $u \otimes v$.
Proof
(2) (3) exercuses
(1) We camot just define b by putting $\sigma(u \not v):=v \otimes u$, because it is not clear that this definition is good. Instead, define $\tilde{z}: u \times v \rightarrow v \times u$ bilinear

$$
\tilde{\sigma}(u, v)=(v, u)
$$

Consider the following diagrams;

$$
\begin{aligned}
& u \times v \underset{\sigma}{\vec{\sigma}} v \times u \xrightarrow{\tau^{\prime}} v \oplus u
\end{aligned}
$$

Note that $\tau^{\prime} \tilde{\sim} \sim$ is bilinear, so from the definition of the tensor product $-!$! $\bar{\delta}: u \oplus v \rightarrow v \oplus u$ such that the diagram above Commutes. Clearly, $\bar{b}(u \oplus v)=v \otimes u$.
Exercise: Snow that $\overline{\mathcal{B}}$ is an isomorphism. (eeg. by constructing an inverse)

INDUCED MAPS
Let $f: u \rightarrow u^{\prime}, g: v \rightarrow v^{\prime}$ be R-linear maps. Then f ! a linear map, denoted by $f \otimes g: u \otimes v \rightarrow u_{\otimes} \otimes v$ st.

$$
\begin{aligned}
& u \times v \xrightarrow{\tau} u \otimes v \\
& \downarrow f \times g \quad \downarrow f \otimes g \\
& u^{\prime} \times v^{\prime} \xrightarrow[\tau^{\prime}]{\longrightarrow} u^{\prime} \otimes v^{\prime}
\end{aligned}
$$

ana $f \otimes g(u \otimes v)=f(u) \otimes g(v)$.
Exercise: Prove this
Also, $\left(f_{1} \circ f_{2}\right) \otimes\left(g_{1}, g_{2}\right)=\left(f_{1} \otimes g_{1}\right) \circ\left(f_{2} \otimes g_{2}\right)$.
composition of maps

HOMOLOGY WITH COEFFICIENTS Fix an abelian group G.
IMPORTANT; we use additive notation for G. Neutral element is 0 .
Let (C, ∂) be a chain complex. Define a new chain complex $(D, \widetilde{\partial})$,

$$
\text { by } \begin{aligned}
D_{i}:=C_{i} \otimes G \\
\tilde{\partial}:=\partial \otimes i d
\end{aligned}
$$

(All tensor products here are over \mathbb{Z}) Exercise
(D.,$\tilde{\partial}$) is a chain complex, ie. $\tilde{\partial} \circ \widetilde{\partial}=0$,

Notation: D_{0} is usually denoted by C. $\otimes G$, and we unite $\partial \otimes i d$ for $\widetilde{\partial}$, but often we just unite ∂ again.

We can wite elements of $C_{k} \otimes G$ as $\sum_{i=1}^{l} n_{i} a_{i}$ with $l \geq 0, n_{i} \in G, a_{i} \in C_{k}$. instead of $\sum_{i=1}^{\ell} u_{i} \otimes a_{i}$ or $\sum_{i=1}^{l} a_{i} \otimes n_{i}$ $\partial\left(\sum n_{i} a_{i}\right)=\varepsilon n_{i} \partial a_{i}$
Remark: C_{k} is in general not a part of $G \otimes C_{K}$, so \nexists meaning to take $a_{\in} C_{k}$ ana consider it as an element of $G \otimes C_{K}$. \# meaning to $1 \cdot a$
Natural question. what is the relationship between the old \& the new chain complex?
Well apply the above to chain complexes of singular chains $S_{0}(x), S_{0}(x, A)$.

