MOTIVATION
For topological spaces x, y, we wish to compute $H_{*}(x \times y)$.
It is reasonable to expect that this is expressible in thins of $H_{*}(x)$ and $H_{*}(1)$, since for each cycle z $z \times p t$ is a cycle in $x \times y$. More generally, for cycles z in x and w in 1 , $z \times W$ should be a cycle in $x \times y$. The process of establishing a connection consists of two steps:
(1) topology: express $S_{.}(x \times y)$ with S. (x) and S. (y)
(2) algebra: compute $H_{*}(x \times y)$ from $S .(x \times y)$
What happens in step 1 is most
easily seen on an example of ow-complexes.
EXAMPLE

$$
\begin{aligned}
& T^{2}=S^{1} \times S^{1}
\end{aligned}
$$

CW -decomposition of T^{2} :

- 1 0-all $v_{1} \times v_{2}$
- 21 -calls $e_{1} \times v_{2}, v_{1} \times e_{2}$
- 12 -calls $e_{1} \times e_{2}$

CW chain complex:

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}\left\langle e_{1} \times e_{2}\right\rangle \rightarrow \mathbb{Z}\left\langle e_{1} \times V_{2}, V_{1} \times e_{2}\right\rangle \rightarrow \mathbb{Z}\left\langle V_{1} \times V_{2} \rightarrow 0\right. \\
& \text { product of cells of st } \\
& \text { whose dim adds up to } 2
\end{aligned} \quad \begin{aligned}
& \text { product of calls of } s 1 \\
& \text { whose dim adds up to } 1
\end{aligned}
$$

For general complexes:
Let x, y be a-complexes, e_{k} a k-cell in x, e_{e} an bell in 1 .
$\varphi: B^{k} \rightarrow x$ char. map for e_{k}

$$
\left.\varphi\right|_{B^{k}} ^{\circ} \text { injective, }\left.\varphi\right|_{S_{k-1}}=: \varphi 1
$$

gluing map
$\Psi: B^{l} \rightarrow Y$ char. map for e_{ℓ}
$\left.\Psi\right|_{\mathrm{B}^{e}}$ infective, $\left.\Psi\right|_{g_{e--}}=: \Psi^{\prime}$
then $\varphi \times \Psi: B^{k} \times B^{l} \rightarrow X \times Y$ has all

$$
B^{22}
$$

the properties of a char map:

$$
\left(B^{k} \times B^{e}\right)=\dot{B}^{k} \times \dot{B}^{e}
$$

$$
\begin{gathered}
\partial\left(B^{k} \times B^{l}\right) \times S^{k-1} \times B^{l} \cup B^{k} \times S^{l-1} \\
\mathbb{Z}^{k+l-1} \\
\not \downarrow^{\varphi^{\prime} \times \Psi} \cup \varphi \times \Psi^{\prime} \\
\times \times \Psi
\end{gathered}
$$

This yields a $(k+l)-a l l e_{k} \times e_{e}$ in $X \times Y$.

Hence: n-cells in $x \times y$ are produced by $e_{k} \times e_{e}$, where $k+l=n$.
$C_{n}^{a j}(x \times y)$ is generated by $e_{k} \times e_{e}$, $k+l=n$ and we can express this algebraically as follows:
linear combinations of cells in x and in I should give rise to linear combinations of product cells, so this correspondence must be bilinear

$$
\begin{aligned}
C_{k}^{w} \otimes C_{e}^{w}(7) & \rightarrow C_{k+e}(x \times y) \\
e_{k} \otimes e_{e} & \longrightarrow e_{k} \times e_{e}
\end{aligned}
$$

We form the tensor product of chain complexes $C_{0}^{a}(x)$ and $C_{0}^{(u)}(1)$, where n-dim elements are generated by elementary tensors for which the dims of the two factors add to n

$$
\left(C^{(a)}(x) \otimes C^{(j)}(y)\right)_{n}=\underset{k+l=n}{\otimes} C_{k}^{(\alpha)}(x) \otimes C_{l}^{(a)}(y)
$$

We also need to define the boundary map, this map will correspond to geometric boundary of $e_{k} \times e_{e}$.
For

$$
B^{k} \times B^{l}: \partial\left(B^{k} \times B^{l}\right)=\partial B^{k} \times B^{l} \cup B^{k} \times \partial B^{l}
$$

We can interpret the summands as chains, but we need to be careful about orientations:

$$
\partial\left(e_{k} \otimes e_{e}\right)=\partial e_{k} \otimes e_{e}+(-1)^{k} e_{k} \otimes \partial e_{e}
$$

(to derive this formula vigorously, would require a detour to differential geometry that we will skip).
This motivates the following definitions:
GRADED GROUPS
$A_{0}=\left\{A_{i}\right\}_{i \in \mathbb{Z}}$ graded abelian groups sometimes we unite

$$
A=\bigoplus_{i \in \mathbb{Z}} A_{i}
$$

$A ., B$. are graded abelian gps. $f: A \rightarrow B$ homo. We say f is graded of degree d if $f\left(A_{i}\right) \subset B_{i+d} \quad \forall i$, We unite $|f|=d$.

TENSOR PRODUCTS
$A ., B$. graded abelian groups. $\Rightarrow A \otimes B$ intents a grading.

$$
(A \otimes B)_{n}:=\bigoplus_{i f j=n} A_{i} \otimes B_{j}
$$

Let $f: A!{ }^{\prime} \rightarrow B_{0}^{\prime}, g: A_{0}^{\prime \prime} \rightarrow B_{!}^{\prime \prime}$ be graded homomorphisms. Then f a graded homo.

$$
f \otimes g: A^{\prime} \otimes A^{\prime \prime} \rightarrow B^{\prime} \otimes B^{\prime \prime}
$$

which satisfies

$$
(f \otimes g)\left(a^{\prime} \otimes a^{\prime \prime}\right)=(-1)^{|g| \cdot\left|a^{\prime}\right|} f\left(a^{\prime}\right) \otimes g\left(a^{\prime \prime}\right)
$$

$\forall a^{\prime}, a^{\prime \prime}$ elements of pure degree
Sometimes we write this as

$$
\left\langle f \otimes g, a^{\prime} \otimes a^{\prime \prime}\right\rangle=(-1)^{|g| a^{\prime \prime}}\left\langle f, a^{\prime}\right\rangle \otimes\left\langle g, a^{\prime \prime}\right\rangle
$$

$$
|f \otimes g|=|f|+|g|
$$

KOSZUL SIGN CONVENTION

CHAIN COMPLEXES
$\left(A, \partial_{A}\right),\left(B, \partial_{B}\right)$ be chain complexes $\left.\sim \sim\right)$ $\left(A \otimes B, \partial_{A \otimes B}\right)$

$$
\partial_{A \otimes B} i=\partial_{A} \otimes i d_{B}+i d_{A} \otimes \partial_{B}
$$

(using new sign conventions: $\left|\partial_{A}\right|=-1,\left|\partial_{B}\right|=-1$)

$$
\begin{aligned}
\partial_{A \otimes B}(a \otimes b) & =\left(\partial_{A} \otimes i d_{B}\right)(a \otimes b)+\left(i d_{A} \otimes \partial_{B}\right)(a \otimes b) \\
& =\partial_{A}(a) \otimes b+(-1)^{(-1) \cdot|a|} a \otimes \partial_{B}(b) \\
& =\partial_{A}(a) \otimes b+(-1)^{|a|} a \otimes \partial_{B}(b)
\end{aligned}
$$

Check that $\partial_{A \otimes B} \cdot \partial_{A \otimes B}=0$

Special case: $\left(A_{0}, \partial_{A}\right)$ chain complex G - abelian group, viewed as a chain complex concentrated un degree 0 .

MA. $\otimes G$ coincides with our previous onsistruct.

THEOREM (EILENBERG-ZILBER)
\exists a chain homotopy eguivalerrce

$$
s_{0}(x \times 1) \simeq s_{0}(x) \otimes s_{0}(y)
$$

that is natural in $x \& y$.
In particular, \ni iso

$$
H_{*}(x \times y)=H_{\not}\left(s_{0}(x) \otimes s_{0}(y)\right)
$$

THE HOMOLOG 7 CROSS PRODUCT $X=$ space, denote 0 - implies in X by $x \in X: X: \Delta_{0} \rightarrow x \in X$.
THEOREM \forall any two spaces $x \& Y$ I a bilinear map

$$
\begin{aligned}
S_{p}(x) \times S_{q}(7) & \xrightarrow{x} S_{p+2}(x \times y) \\
(6, \tau) & \longmapsto 6 \times \tau
\end{aligned}
$$

$\forall p, q \geq 0$ st.:
(1) $\forall x \in x \& t: \Delta_{g} \rightarrow 1$

$$
\begin{aligned}
& x \times t: \Delta_{g} \simeq \Delta_{0} \times \Delta_{2} \rightarrow x \times \mathcal{Y} \text { is } \\
& (x \times t)(v)=(x, t(v)) \quad \forall v \in \Delta_{g} \\
& \forall y \in \mathcal{U}) \\
& \sigma \times y: \Delta_{p} \rightarrow x \times y \quad \text { is } \\
& (\sigma x y)(u)=(\sigma(u), y) \quad \forall u \in \Delta_{p}
\end{aligned}
$$

(2) The operation x is natural in x, y, namely if $f: x \rightarrow x^{\prime}, g: y \rightarrow 11$
and $f \times g: x \times \geq \rightarrow x^{\prime} \times y^{\prime}$

$$
(x, y) \longmapsto(f(u), g(y))
$$

then $\forall a \in S_{p}(x), b \in S_{g}(y)$ we nave

$$
\begin{aligned}
& (f \times g)_{c}(a \times b)=f_{c}(a) \times g_{c}(b) \\
& S_{p}(x) \times S_{g}(y) \xrightarrow{x} S_{p+g}(x \times y) \\
& \left.\downarrow f_{c}(-) \times g_{c}(-) \quad \int^{(}\right)(f \times g)_{c} \\
& S_{p}\left(x^{\prime}\right) \times S_{g}\left(y^{\prime}\right) \longrightarrow S_{p+2}\left(x^{\prime} \times y^{\prime}\right)
\end{aligned}
$$

(3) $\partial(a \times b)=\partial a \times b+(-1)^{|a|} a \times \partial b \quad \forall a \in S .(x)$ $b \in S_{0}(y)$ of pure degree.
Remark
Since x is bilinear, it induces a linear map

$$
S_{0}(x) \otimes S_{0}(y) \rightarrow S_{0}(x \times y)
$$

(in fact $\left.S_{p}(x) \oplus S_{a \otimes b}(7) \rightarrow S_{p+2}(x \times y)\right)$
Well denote this operation also by x. If we endow $S_{0}(x) \otimes S_{0}(7)$ with the differential $\partial_{\otimes}:=\partial_{x} \otimes i d+i d \otimes \partial y$ then the map $x: S_{0}(x) \otimes S_{0}(7) \rightarrow S_{0}(x \times 7)$ is a chair map. Indeed,

$$
\begin{aligned}
\left(x \circ \partial_{\otimes}\right)(a \otimes b) & =x \cdot\left(\partial a \otimes b+(-1)^{|a|} a \otimes \partial b\right) \\
& =\partial a \times b+(-1)^{|a|} a \times \partial b= \\
& =\partial(a \times b)=(\partial \circ x)(a \otimes b)
\end{aligned}
$$

Proof of the theorem Step 1: Construction of

Acyclic models it suffices to consider a very special care namely wren $x=\Delta_{p}, y=\Delta_{2}$ are them selves simplicos \& the chains au identity maps
(these are modes, acyclic vergers to the fact
$n=0$ So $p=0, q=0$
Define $x \times y_{i}=(x, y)$.
For higher n) s \& the case when $p=0$ or $g=0$, define $x \times t, b \times y$ as in the statement. Exercise: Check that everything is satisfied.
Let $n \geq 1$, and assume we have already defined x for all spaces x, y for all p, g with $0 \leq p+g<n$.

Let $0<p, 0<q$ be such that $p+g=r$. Take list $x=\Delta_{p}, 4=\Delta_{g}$. Let $i_{p}: \Delta_{p} \rightarrow \Delta_{p}, i_{g}: \Delta_{2} \rightarrow \Delta_{2}$ be the
id maps, viewed as singular simplices.
Consider $a:=\partial i_{p} \times i_{q}+(-1)^{p} i_{p} \times \partial i_{q} \in S_{p+g-1}\left(\Delta_{p} \times \Delta_{2}\right)$
\uparrow both defined
by induction
Intuition this should be $\partial\left(i_{p} \times i g\right)$, but $i_{p} \times i_{g}$ was not yet been defined.
CLAIM: a is a cycle
Proof $\partial a_{\lambda}=\partial \partial i_{p} \times i_{2}+(-1)^{p-1} \partial i_{p} \times \partial i_{q}$
by the $+(-1)^{p} \partial i_{p} \times \partial i_{2}+(-1)^{p}(-1)^{p} i_{p} \times \partial i_{g}$
induction

$$
=0
$$

hypothesis
$\left(\left|\partial i_{p} \times i_{g}\right|=n-1\right.$ so by induction we can \mid ip \times dig $\mid=n-1 \quad$ apply the formula for ∂)
But $\Delta_{p} \times \Delta_{2}$ is contractible, hence

$$
H_{i}\left(\Delta_{p} \times \Delta_{2}\right)=0 \quad \forall \quad i>0
$$

Note that $p+q-1>0$ because $p>0 \& q>0$.

$$
\Rightarrow[a]=0 \in H_{p+2-1}\left(\Delta_{p} \times \Delta_{g}\right)
$$

$$
\Rightarrow \exists c \in S_{p+2}\left(\Delta_{p} \times \Delta_{2}\right) \text { s.t. } a=\partial c
$$

Define $i_{p} \times i_{q}:=c \in S_{p+g}\left(\Delta_{p} \times \Delta_{q}\right)$.
Now let $\sigma: \Delta_{p} \rightarrow x, t: \Delta_{2} \rightarrow Y$ be singular simplices Note that

$$
\sigma=\sigma_{c}\left(i_{p}\right) \& t=\tau_{c}\left(i_{g}\right)
$$

Put $\sigma \times t:=(\delta \times t)_{c}\left(i_{p} \times i_{z}\right)$.
Exeruse: the last definition coincides with the previous one for the case $x=\Delta_{p}, y=\Delta_{2}, \quad \sigma=i_{p}, \tau=c_{2}$.

Step 2 Map from step 1 satisfies (2) If $x-f, y, g, y)$ are maps, then

$$
(f \times g)_{c}(\sigma \times t)=(f \times g)_{c}(\sigma \times t)_{C}\left(i p \times i_{q}\right)
$$

product of maps

$$
\begin{aligned}
& =((f \circ \partial) \times(g \circ \tau))_{c}\left(i_{p} \times i_{2}\right) \\
& =f_{c}(\zeta) \times g_{c}(t)
\end{aligned}
$$

Step 3 Map from Step 1 satisfies (3)

$$
\partial(a \times b)=\partial\left((a \times b)_{c}\left(1_{p} \times i_{2}\right)\right)=
$$

assume
a, b are
singular simplices

$$
\begin{aligned}
& =(a \times b)_{c} \circ \partial\left(i_{p} \times i_{2}\right) \\
& =(a \times b)_{c}\left(\partial i_{p} \times i_{g}+(-1)^{p} i_{p} \times \partial i_{g}\right) \\
& =a_{c}\left(\partial i_{p}\right) \times b_{c}\left(i_{2}\right)+(-1)^{p} a_{c}\left(i_{p}\right) \times b_{c}\left(\partial i_{2}\right) \\
& =\partial a_{c}\left(i_{p}\right) \times b_{c}\left(i_{g}\right)+(-1)^{p} a_{c}\left(i_{p}\right) \times \partial\left(b_{c} i_{g}\right. \\
& =\partial a \times b+(-1)^{p} a \times \partial b .
\end{aligned}
$$

Extending this map bilinearly completes the induction

