CROSS PRODUCT IN HOMOLOGY
Observe that since $x: S .(x) \otimes S(\mathcal{I}) \rightarrow S .(x \times 1)$ is unique up to homotopy \& satisfies

$$
\partial(z \times \tau)=\partial z \times \tau+(-1)^{|6|} \sigma \times \partial \tau
$$

it deseence to a well defined
CROSS PRODUCT

$$
\begin{aligned}
x: H_{p}(x) \otimes H_{2}(y) \rightarrow H_{p+2}(x \times y) . \\
{[b] \times[\tau]:=[b x \tau] }
\end{aligned}
$$

This definition is independent of choices (If σ^{\prime} is another choice with $\sigma-\sigma^{1}=\partial m$, we have $\quad \sigma \times t-\sigma^{\prime} \times \tau=\left(\partial \beta^{n}\right) \times \tau=\partial\left(\rho^{n} \times \tau\right)$ Since $\partial \tau=0$.)
If we identify $H_{x}(x \times 7)$ with $H_{*}(7 \times x)$ via $T(x, y)=(y, x)$, then the cross
product is graded commutative, ie.

$$
a \times b=(-1)^{|a||b|} b \times a \in H_{*}(\times \times 4)
$$

Proof
We'll identify $x \times \underline{\sum} \approx \underline{y} x$ using the obvious map

$$
\begin{aligned}
T: & x \times y \rightarrow y \times x \\
(x, y) & \mapsto(y, x)
\end{aligned}
$$

Since $t^{2}=i d$ this map induces an isomorphism

$$
T_{c}: S_{.}(x \times y) \rightarrow S_{.}(\underline{y} \times x)
$$

and similarly on homology, On the other hand consider

$$
\begin{aligned}
t: S_{1}(x) \otimes S_{0}(y) & \longrightarrow S_{0}(y) \otimes S_{.}(x) \\
\alpha \otimes \beta & \longmapsto(-1)^{|\alpha||\beta|} \beta \otimes \alpha
\end{aligned}
$$

(the sign is reg hired in order for τ to be a chain map (so that $\partial \otimes t=\tau \partial_{\otimes}$). It also satisfies $t^{2}=w^{2}$ and then
is also an somorphusin. Consider the diagram:

$$
\begin{aligned}
& \text { S. }(x \times y) \underset{x}{\stackrel{\theta_{x, y}}{\sim}} S_{i}(x) \otimes S_{1}(y) \\
& S^{(x \times y)}{ }^{T_{C}}{ }_{x} \\
& S_{0}(1 \times x) \underset{x}{\underset{x}{\theta_{y, x}}} S_{0}(y) \otimes S(x)
\end{aligned}
$$

This diagram is not commutative, but we can show;
CLAIM
The maps $T_{C}^{-1} \circ x_{0} \tau$ and x are chain homotopic. Similarly $\tau_{0}^{-1} \theta^{\pi} c$ are chain homotopic.
The maps are natural in $x \& y$ and are the obvious ones

$$
\begin{aligned}
& x_{0} \otimes y_{0} \longmapsto x_{0} x y_{0} \\
& x_{0} y_{0} \longmapsto x_{0} \otimes y_{0} .
\end{aligned}
$$

in degree 0 .

Conclusion: By a previous theorem there exists a chain homotopy.
x is also natural with respect to maps; if $f: x \rightarrow x^{\prime}$ and $g: y \rightarrow y^{\prime}$ are continuous, then

$$
\left(f_{*} a\right) \times\left(g_{*} b\right)=(f \times g)_{*}(a \times b) \in H_{*}\left(x^{\prime} \times y^{\prime}\right)
$$

where $f \times g: x \times y \rightarrow x^{\prime} \times y^{\prime}$ is the product map. A relative version of x also exists.

Summing over $p \& q$ such that $p+q-n$ we can consider the total map

$$
x: \bigoplus_{p+g=h} H_{p}(x) \otimes H_{2}(7) \rightarrow H_{n}(x \times y)
$$

and ark whether it is an isomorphism. It is always infective, but not necessarily surjective, as quantified by the Kinneth
formula. We give a completely algebraic version first.
THE ALgEbRAIC KÜNNETH FORMULA
Let K. and $L_{\text {© }}$ be chain complexes of free abelian groups. then \exists an exact sequence

This SES is natural w.r.t. chain maps $K_{0} \rightarrow K_{0}$, $L_{0} \rightarrow L_{0}!$. The seppence
splits but not canonically.
PROOF
Step 1
Consider the case that $L_{\text {. has trivial }}$ differential so that $H_{*}\left(L_{0}\right)=L_{\text {. and }}$ $\partial_{\otimes}=\partial \otimes$ id on $K_{.} \otimes L_{\text {. }}$. The nomology groups

$$
H_{n}\left(K_{0} \otimes L_{0}\right)=\frac{\operatorname{Ken}\left(2 \otimes \operatorname{did}\left(K_{0} \otimes L_{0}\right)_{n} \rightarrow\left(K_{0} \otimes L_{0}\right)_{n-1}\right)}{\operatorname{m}\left(2 \otimes \operatorname{dd}\left(K_{0} \otimes L_{0}\right)_{n+1} \rightarrow\left(K_{0} \otimes L_{0}\right)_{n}\right)}
$$

$\partial \otimes$ a preserves the direct sum decomposition:

$$
\left(K_{0} \otimes L_{0}\right)_{n}=\underset{p+g=n}{\oplus} K_{p} \otimes L_{q}
$$

so

$$
\begin{array}{r}
H_{n}\left(K . \otimes L_{0}\right)=\underset{p+g=n}{\oplus} H_{p}\left(K_{0} \otimes L_{2}\right) \\
\tilde{\equiv} \underset{p+2=n}{\oplus} H_{p}(K .) \otimes L_{2}
\end{array}
$$

for homology
(Lg is free,
So $\left.\operatorname{Tar}\left(\operatorname{LL}_{2},-\right)=0\right)$
Since L. has $\cong \underset{P r g=n}{ } H_{p}\left(K_{0}\right) \otimes H_{2}\left(L_{.}\right)$ trivial boundary

$$
H_{2}\left(L_{1}\right)=L_{2}
$$

Since Tor vanishes on free groups, this establishes the theorem in this case
step 2 (general case -sketch of proof)
Consider the SES $\binom{\left.B_{n}=\partial_{n+1}^{L}\left(L_{n+1}\right)\right)}{Z_{n}=\operatorname{ken}_{n}^{L}}$

$$
0 \rightarrow Z_{n} \rightarrow L_{n} \rightarrow B_{n-1} \rightarrow 0
$$

We apply $K_{0} \mathbb{Q}$-, which is exact since all groups involved are free, and obtain:

$$
0 \rightarrow K_{0} \otimes Z_{0} \rightarrow K_{0} \otimes L_{0} \rightarrow K_{0} \otimes B_{0}[-1] \rightarrow 0
$$

Here $Z . \& B$. are viewed as chain complexes with 0 -differential. This generates a LES

$$
\begin{aligned}
& \cdots \rightarrow H_{n+1}\left(K_{0} \otimes B_{0}[-1]\right) \xrightarrow{i d \otimes i} H_{n}\left(K_{0} \otimes Z_{0}\right) \rightarrow \\
& \rightarrow H_{n}\left(K_{0} \otimes L_{0}\right) \rightarrow H_{n}\left(K_{.} \otimes B_{0}[-1]\right) \xrightarrow{i d \otimes i}
\end{aligned}
$$

Since Z.\&B. are trivial complexes, we have

$$
H_{n}\left(K . \otimes Z_{0}\right)=\underset{p+2=n}{\oplus} H_{p}(K .) \otimes Z_{q}
$$

and

$$
H_{n}\left(K_{0} \otimes B_{0}[-1]\right)=\bigoplus_{p+g=n} H_{p}\left(K_{0}\right) \otimes B_{2-1}=\oplus_{p+2=n-1} H_{p}(K) \otimes B_{q}
$$

by the first part of the proof.
EXERCISE: The connecting homomorphism in the LES above is $i d \otimes i$, where i is induced by inclusion B.CL.
It follows that for each n we have a SES

$$
0 \rightarrow \text { cokes }(i d \otimes i)_{n+1} \rightarrow H_{n}\left(L . \otimes K_{0}\right) \rightarrow \operatorname{ken}(i d \otimes i) \rightarrow 0
$$

We will obtain the Kiinneth formula once we identify these groups. (see the Kottke note)
Naturality \& splitting is lest as an exercise.

Combining the algebraic Künneth theorem with the Ellerberg-zilber theorem yields
TOPOLOGICAL VERSION OF THE KÜNNETH FORMULA
of top. spaces $X, \mathcal{1}$, 子 a SES

$$
0 \rightarrow P+t^{*}=n \cdot H_{p}(x) \otimes H_{2}(7) \rightarrow H_{n}(x \times 7) \rightarrow \oplus \operatorname{tor}\left(H_{p}(x)+H_{2}(1)\right) \rightarrow 0
$$

The sequence is natural w.r.t. maps $x \rightarrow x^{\prime}, y \rightarrow y^{\prime}$. It splits, but not canonically. The 1st map is indencede by the cross product.
EXERCISES
(1) Calculate the reduced homology of $T^{n}=\delta^{\prime} x \cdot x S^{\prime}(n$-times $)$.
(2) Calculate $H_{k}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right)$ and

$$
H_{k}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3} ; \mathbb{Z}_{2}\right)
$$

(3) Calculate $H_{k}\left(\times \times S^{n}\right)(n \geq 2)$ in terms of $H_{i}(x)$.
(1) $T^{1}=S^{1} \quad \& \quad H_{i}\left(S^{1}\right)= \begin{cases}\mathbb{Z} & i=0,1 \\ 0 & \text { otherwise }\end{cases}$ Inductively define $T^{n+1}=S^{1} \times T^{n}$.
Claim: $H_{k}\left(T^{n}\right)=\mathbb{Z}^{\binom{n}{k}}$.
This is the case for T^{1}.
Assume $H_{k}\left(T^{n}\right)=\mathbb{Z}^{\binom{n}{k} \text {. } . ~ . ~}$
Now calculate

$$
\begin{align*}
& H_{k}\left(T^{n+1}\right)=H_{k}\left(S^{1} \times T^{n}\right) \\
& \cong \oplus_{i}\left(H_{i}\left(S^{1}\right) \otimes H_{K-i}\left(T^{n}\right)\right) \begin{array}{c}
\begin{array}{c}
\text { since all } \\
\text { nomology group } \\
\text { are ore }
\end{array}
\end{array} \\
& \downarrow \text { are free, } \\
& \text { then is } \\
& \text { Kuinneth } \\
& \text { (1) } \underset{i}{\oplus}\left(\operatorname { T o r } \left(H_{i}\left(S^{1}\right), H_{k-1-1}(T)\right.\right. \tag{n}\\
& \text { formula } \\
& \cong \oplus_{i}^{\oplus}\left(H_{i}\left(S^{1}\right) \otimes H_{k-i}\left(T^{n}\right)\right) \\
& \cong\left(H_{0}\left(\delta^{1}\right) \otimes H_{k}\left(T^{n}\right)\right) \oplus\left(H_{1}\left(\delta^{n}\right) \otimes H_{k}\left(T^{n}\right)\right) \\
& \cong H_{K}\left(T^{n}\right) \oplus H_{K-1}\left(T^{n}\right)
\end{align*}
$$

$$
\begin{aligned}
& \cong \mathbb{Z}^{\binom{n}{k}} \oplus \mathbb{Z}^{\binom{n-1)}{k}} \\
& \cong \mathbb{Z}^{\binom{n+1}{k}}
\end{aligned}
$$

(2) Recall

$$
\begin{aligned}
& H_{i}\left(\mathbb{R} P^{n}\right)= \begin{cases}\mathbb{Z}_{1} & i=0 \& i=n \text { if } n \text { odd } \\
\mathbb{Z}_{2} & 0<i<n \text { oi } i \text { odd } \\
0 & 0<i n \text { if } i \text { even } \\
0 & i=n \text { if } n \text { even }\end{cases} \\
& \& H_{i}\left(\mathbb{R}^{P^{n}} \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \quad i=0,1, \ldots, n .
\end{aligned}
$$

Künneth formula gives

$$
\begin{aligned}
H_{k}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) \cong & \oplus i_{i j=k} H_{i}\left(\mathbb{R} P^{2}\right) \otimes H_{j}\left(\mathbb{R} P^{3}\right) \otimes \\
& \oplus \operatorname{tor}_{i+1}\left(H_{i}\left(\mathbb{R} P^{2}\right), H_{j}\left(\mathbb{R} P^{3}\right)\right)
\end{aligned}
$$

So

$$
\begin{aligned}
H_{0}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) & \cong H_{0}\left(\mathbb{R} P^{2}\right) \otimes H_{0}\left(\mathbb{R}^{3}\right) \\
& \simeq \mathbb{Z} \\
H_{1}\left(\mathbb{R}^{P} \times \mathbb{R} \mathbb{P}^{3}\right) & \cong \mathbb{Z} \otimes \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \otimes \mathbb{Z} \\
& \oplus \operatorname{Tor}(\mathbb{Z} \mathbb{Z}) \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
\end{aligned}
$$

$$
\begin{aligned}
H_{2}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) & \cong \mathbb{Z}_{2} \otimes \mathbb{Z}_{2} \cong \mathbb{Z}_{2} \\
H_{3}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) & \cong \mathbb{Z} \otimes \mathbb{Z} \oplus \operatorname{Tor}\left(\mathbb{Z}_{2}, \mathbb{C}_{2}\right) \\
& \cong \mathbb{Z} \oplus \mathbb{Z}_{2} \\
H_{4}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) & \cong \mathbb{Z}_{2} \otimes \mathbb{Z} \oplus 0=\mathbb{Z}_{2} \\
H_{5}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) & =0 \\
H_{6}\left(\mathbb{R} P^{2} \times \mathbb{R} P^{3}\right) & =0
\end{aligned}
$$

The case for \mathbb{Z}_{2} coefficients is left as an exercise.
(3)

$$
H_{k}\left(x \times s^{n}\right) \cong \underset{i, j=k}{\oplus} H_{i}(x) \otimes H_{j}\left(S^{n}\right) \otimes
$$

This gives $Y_{0}\left(x \times S^{n}\right) \cong H_{0}(x)$

$$
\begin{aligned}
H_{1}\left(x x S^{n}\right) & \cong H_{0}(x) \otimes H_{1}\left(s^{n}\right) \\
& \oplus H_{1}(x) \otimes H_{0}\left(s^{n}\right) \\
& \cong H_{1}(x)
\end{aligned}
$$

For $k<n$ we get

$$
H_{k}\left(x x s^{n}\right) \cong H_{k}(x)
$$

next

$$
H_{n}\left(x \times \Phi^{n}\right) \cong H_{0}(x) \oplus H_{n}(x) .
$$

For $k \geqslant n$

$$
H_{k}\left(x x s^{n}\right) \cong H_{n-k}(x) \oplus H_{k}(x) \text {. }
$$

