COHOMOLOGICAL CROSS PRODUCT Fix a commutative ring R (with a unity). Let x, y be spaces. Let $\varphi \in s^{p}(x ; R), \Psi \in S^{2}(y ; R)$ be cochains. Well define $\varphi \times \Psi \in S^{n}(x \times y ; R)$, where $n=p+2$.
White $\varphi: s_{p}(x) \rightarrow R, \Psi: s_{2}(y) \rightarrow R$. Recall $\theta: S_{0}(x \times y) \rightarrow S_{0}(x) \otimes S_{0}(y)$ Fix one such map Consider now $m \circ \varphi \otimes \Psi: \delta_{p}(x) \otimes_{\mathbb{Z}} S_{2}(y) \rightarrow R \otimes_{2} R^{m} \rightarrow R$, Where the map m is induced by the bilinear map $R \times R \rightarrow R,\left(r_{1}, r_{2}\right) \mapsto r_{1} \cdot r_{2}$.
\Rightarrow we get a cochain

$$
m \circ \varphi \otimes \Psi: \underbrace{\left(S_{0}(x) \otimes S .(7)\right.})_{r-2} \rightarrow R
$$

$$
\left(\underset{p^{\prime}+2^{\prime}=p+2}{\oplus} \quad S_{p}^{\prime \prime} S_{2}(x) \otimes S_{2^{\prime}}(y)\right)
$$

by defining $m_{0} \varphi \otimes \Psi$ to be $0 \quad \forall p^{\prime}, \mathcal{Q}^{\prime}$ st. $p^{\prime}+g^{\prime}=p+g$ but $\left(p^{\prime}, q^{\prime}\right) \neq(p, 2)$
Define

$$
\begin{aligned}
& \varphi \times \Psi:=m_{0}(\varphi \otimes \Psi)_{0} \theta_{1} \varphi \times \Psi \in S^{p+q}(x \times \varphi, R) \\
& \left(\theta: S_{0}(x \times y) \rightarrow S_{0}(x) \otimes_{\mathbb{Z}} S_{0}(\psi)\right)
\end{aligned}
$$

Note: x is natural w.r.t. map $x \rightarrow x$), $\underline{q} \rightarrow \mathcal{Y}^{\prime}$ because θ has this property. θ is not unique.
A more explicit formula.
Let $c \in S_{n}(x \times 7)$, where $n=p+2$

$$
\begin{aligned}
& \theta(c)=\sum_{r+s=n} \sum_{i, j} a_{i}^{r} \otimes b_{j}^{s} \text { with } \\
& a_{i}^{r} \in S_{r}(x), b_{j}^{s} \in S_{s}(1) .
\end{aligned}
$$

$$
(\varphi \times \Psi)(c)=(-1)^{p \cdot q} \sum_{i, j} \varphi\left(a_{i}^{p}\right) \cdot \Psi\left(b_{j}^{q}\right)
$$

Proof

$$
\begin{aligned}
& (\varphi \times \Psi)(c)=m_{0}(\varphi \otimes \Psi) \circ \theta(c)= \\
= & m_{0}(\varphi \otimes \Psi)\left(\sum_{r+s=n} \sum_{i, j} a_{i}^{r} \otimes b_{j}^{s}\right)= \\
= & \sum_{r+s=n} \sum_{i, j} m_{0} \varphi \otimes \Psi\left(a_{i}^{r} \otimes b_{j}^{s}\right)= \\
= & \sum_{i, j} m \circ \varphi \otimes \Psi\left(a_{i}^{p} \otimes b_{j}^{q}\right)= \\
= & \sum_{i, j} m\left((-1)^{|\psi| \varphi} \varphi\left(a_{i}^{p}\right) \otimes \Psi\left(b_{j}^{q}\right)\right) \\
= & \sum_{i, j}(-1)^{p q} \varphi\left(a_{i}^{p}\right) \cdot \Psi\left(b_{j}^{2}\right)
\end{aligned}
$$

CLAIM

$$
b(\varphi \times 4)=5 \varphi \times \Psi+(-1)^{|\varphi|} \varphi \times s \psi .
$$

In other words, the map

$$
S^{p}(x ; R) \otimes_{\mathbb{Z}} \delta^{2}(y ; R) \rightarrow S^{p+2}(x \times Y ; R)
$$

undiceed by
$(\varphi, \Psi) \mapsto \varphi \times \Psi$ is a chain map.
(wart. $b_{x} \otimes i d$ +id $\otimes S_{y}$ and $S_{x \times y}$).
WARNING:
In homological algebra, 5 is often defined as: $b f=(-1)^{\text {deg ft }+1} f \circ \partial$.
(sign Convention, Bredon, page 321).
This change does not affect cohomology groups.
Proof of claim

$$
\begin{aligned}
& p=|\varphi| \\
& g:=|\Psi|
\end{aligned}
$$

$$
\begin{aligned}
& \zeta(\varphi \times \psi)=(-1)^{p+q+1}(\varphi \times \psi) \cdot \partial \\
& \text { special }=(-1)^{p+g+1} m \cdot(\varphi \otimes \psi) \cdot \theta \circ \partial \\
& =(-1)^{p+2+1} m_{0}(\varphi \otimes \mathcal{\mathcal { L }}) \cdot \partial_{\otimes} \circ \theta \\
& \gamma \\
& \partial_{x} \otimes i d+i d \otimes \partial y \\
& =(-1)^{p+q+1} m_{0}\left(\varphi \otimes(\Psi \circ \partial y)+(-1)^{2}\left(\varphi \cdot \partial_{x}\right) \otimes \psi\right) \cdot \theta= \\
& =(-1)^{p+2+1} \cdot\left((-1)^{q+1} \varphi \otimes S \Psi+(-1)^{q+p+1} s \varphi \otimes \psi\right) \cdot \theta \\
& =m \circ\left(\operatorname{se\theta } \Psi+(-1)^{p} \varphi \otimes S \Psi\right) \cdot \theta \\
& =S \varphi \times \Psi+(-1)^{P} \varphi \times s \Psi
\end{aligned}
$$

REMARK
The map $(\varphi, \Psi) \rightarrow \varphi \times \psi$ is bilinear oven R, so it induces a map of $R-m o d$

$$
S^{P}(x ; R) \otimes_{R} S^{2}(y ; R) \rightarrow S^{p+g}(x \times y ; R) .
$$

Exercise.

COROLLARY
Cross product on chains induces a product

$$
H^{P}(x, R) \otimes_{R} H^{2}(y ; R) \rightarrow H^{P r} 2(x \times y ; R)
$$

which is independent on the choice of θ.
Proof
We have the following maps

$$
\begin{aligned}
& \xrightarrow{x} \underbrace{H^{p+2}\left(S^{-}(x \times y ; R)\right)}_{H^{p+2}(x \times y ; R)} \text { also denoted } x
\end{aligned}
$$

The composition $x \cdot h$ gives the desired map. The independence of the specific choice of θ follows from the fact that θ is unique
up to chain homotopy.
COMmUTATIVITY OF THE CROSS PRODUCT
Let $\alpha \in H^{P}(x), \beta \in H^{2}(7)$.
Fix a ring R for coefficients \& omit from notation
Question: What is the relation between $\alpha \times \beta \in H^{p+2}(x \times y)$ and $\beta x \alpha \in H^{p+2}(y x x)$? We'll identify $x \times \underline{\sum} \approx \underline{x} x$ using the obvious map

$$
\begin{aligned}
T: & x \times Y \rightarrow Y \times x \\
(x, y) & \mapsto(y, x)
\end{aligned}
$$

Consider the following diagram:

$$
\begin{gathered}
S_{.}(x \times y) \xrightarrow{\theta_{x, y}} S_{0}(x) \otimes S_{1}(y) \\
\uparrow \tau \\
S_{0}(y \times x) \xrightarrow{\theta_{y}} S_{0}(y) \otimes S(x)
\end{gathered}
$$

$\tau(b \otimes a)=(-1)^{|b| \cdot|a|} a \otimes b$.
Exercise. t is a chain map.
Consider the composition.
τ. $\Theta_{y_{x}} 0 T_{c}$. This is a chain map $S .(x \times y) \rightarrow S .(x) \otimes S$.(y). It is natural wot maps $X \rightarrow x^{\prime}, y \rightarrow 1^{\prime}$, and in degree 0 this map does $(x, y) \mapsto x \otimes y$.
Conclusion: By a previous theorem there exists a chain homotopy $\tau \circ \theta_{1, x} \circ T_{C} \simeq \theta_{x, y}$, i.e. there is an operator D; S. $(x \times y) \rightarrow(S .(x) \otimes S .(y))[1]$ st.

$$
\tau \circ \theta_{Y, x} \circ T_{C}-\Theta_{x, Y}=D \circ \partial+\partial_{\otimes} \circ D
$$

We now pass to cohomology. Let $f \in S^{P}(x), g \in S^{g}(y)$ be cocycles.

Let's calculate

$$
\begin{aligned}
& T^{*}([g] \times[f]) \text { : } \\
& T^{*}([g] \times[f])=T^{*}([g \times f])=\begin{array}{c}
c^{\times} \text {on the ever on vhomploge groups }
\end{array} \times \text { on the } \\
& =t^{*}\left(\left[m \circ(g \otimes f) \circ \theta_{Y, x}\right)=\left[m \circ(g \otimes f) \circ \theta_{y, \circ^{\circ}} T_{c}\right]\right. \\
& =(-1)^{p \cdot g}\left[m \circ(f \otimes g) \circ \tau \circ \theta_{1}, x \circ T_{c}\right]= \\
& =(-1)^{p \cdot 2}\left[m_{0}(f \oplus g) \circ \theta_{x, 1}+m_{0}(f \otimes g) \circ\left(D \partial+\partial_{\otimes D}\right)\right]
\end{aligned}
$$

The and term in the $[\ldots]$: it is a coboundary because $f \& g$ are coracles. So $\underbrace{(f \otimes g) \cdot \partial_{\otimes}=0 \text {, }}$

$$
\text { and } m_{0}(f \otimes g) \circ D \partial= \pm s(m(f \otimes g) \circ D) \text {. }
$$

$$
\Rightarrow T^{*}([g] \times[f])=(-1)^{p q}[f] \times[g] .
$$

skew/ super
We proved commutativity

PROPOSITION
$\forall \alpha \in H P(x ; R), \beta \in H^{2}(7 ; R)$ we have $\alpha \times \beta=(-1)^{p \cdot g} T^{*}(\beta \times \alpha)$.
The operation that we will use most in the remaining weeks is the cup product.

