Proposition
$\forall \alpha \in H P(x ; R), \beta \in H^{2}(7 ; R)$ we have $\alpha \times \beta=(-1)^{p \cdot g} T^{*}(\beta \times \alpha)$.
The operation that we will use most in the remaining weeks is the cup product.
THE CUP PRODUCT
Let x be a space. Fix a ring of coefficients R. Well define an operation

$$
\begin{aligned}
H^{P}(x ; R) \otimes H^{2}(x ; R) & \rightarrow H^{P+2}(x ; R) \\
\alpha \otimes \beta \quad & \longmapsto \alpha \cup \beta
\end{aligned}
$$

Consider the diagonal map

$$
d: x \rightarrow x \times x, d(x)=(x, x)
$$

Define $\quad \alpha \cup \beta:=d^{*}(\alpha \times \beta)$
the operation is independent of the choice of θ in cohomology.

Cup product is graded commutative.

$$
\begin{aligned}
\alpha \cup \beta=(-1)^{p g} \beta \cup \alpha \quad & \forall \alpha \in H^{p}(x ; R), \\
& \beta \in H^{2}(x, R)
\end{aligned}
$$

Proof of graded commutativity

$$
\begin{gathered}
\alpha \cup \beta=(-1)^{p 2} \beta \cup \alpha^{\prime} \forall \alpha \in H^{p}(x), \beta \in H^{2}(x) \\
\beta \cup \alpha=d^{*}(\beta \times \alpha)=(-1)^{p 2} d^{*} T^{*}(\alpha \times \beta) \\
T: x \times x \rightarrow x \times x \\
(x, y) \mapsto(y, x)
\end{gathered}
$$

But $d^{*} \circ T^{*}=(T \circ d)^{*}=d^{*}$ because

$$
T \circ d=d \text {. So }
$$

$$
\beta \cup \alpha=\ldots=(-1)^{p 2} \alpha^{*}(\alpha \times \beta)=(-1)^{p q} \alpha \cup \beta
$$

We defined the cup product using the cross product.
It turns out that the cup product also determines the cross product.

Cup product on the level of cochains involves the dual of the composition

$$
S_{0}(x) \xrightarrow{d *} S_{0}(x \times x) \xrightarrow{\theta} S_{1}(x) \otimes S_{1}(x)
$$

Any chain map $S_{0}(x) \rightarrow S_{.}(x) \otimes S_{0}(x)$ which is natural in x and is the obvious map $x_{0} \mapsto x_{0} \otimes x_{0}$ on 0 -chains is called diagonal approximation It can be shown that any two diagonal approximations are chain homotopic. Taking a diagonal approximation with front \& back faces of simplices (AlexanderWhitney diagonal approximation) leads to a more concrete definition of the cup product as presented in Hatches.

THE CUP PRODUCT MORE CONCRETELY Let $0 \leq k \leq n$. Regard the standard
n-simplex $\Delta_{n}=\left[e_{0}, \ldots, e_{n}\right]$ as a map id $\Delta_{\Delta_{n}}$ (so as a singular simplex of the space Δ_{n}).
The front k-face of Δ^{n} is the singular k-simplex

$$
\begin{aligned}
& {\left[e_{e}, e_{1}, \ldots, e_{k}\right]: \Delta^{k} \rightarrow \Delta^{n}} \\
& \quad e_{i} \longmapsto e_{i} \text { for } i=0, \ldots, k .
\end{aligned}
$$

the back k-face of Δ^{n} is the singular k-simplex

$$
\begin{aligned}
& {\left[e_{n-k}, \ldots, e_{n}\right]: \Delta^{k} \rightarrow \Delta^{n}} \\
& \quad e_{i} \mapsto e_{n-k+i} \text { for } v=0, \ldots, k .
\end{aligned}
$$

EXAMPLE
Δ^{2}

front 1-face

Note: the front k-face and the back $(n-k)$-face share a single vertex:

$$
\left[e_{0}, ., e_{k}\right] \&\left[e_{k}, ., e_{n}\right] . \quad \sigma \in S_{n}(x)
$$

For a singular simplex $\sigma: \Delta^{n} \rightarrow x$ its front/back k-face is

$$
\sigma \circ\left[e_{0}, \ldots, e_{k}\right] / \sigma \cdot\left[e_{n-k}, \ldots, e_{n}\right]
$$

DEFINITION
Given $\alpha \in S^{k}(x), \beta \in S^{l}(x)$ and $b \in S_{k+e}(x)$
let

$$
(\alpha \cup \beta)(6):=\alpha\left(\sigma_{0}\left[e_{0},, e_{k}\right]\right) \cdot \beta\left(\sigma_{0}\left[e_{k}, e_{k+e}\right]\right)
$$

then extend by linearity to get

$$
\alpha \cup \beta \in S^{k+l}(x)
$$

\checkmark maps cocycles to cocycles and induces a product on cohomology. LEMMA
For $\alpha e S^{k}(x), \beta \in S^{l}(x)$ we have $S(\alpha \cup \beta)=(S \alpha) \cup \beta+(-1)^{k} \alpha \cup(S \beta)$.

PROOF
Let $\quad G \in S_{K+l+1}(x)$.

$$
\begin{aligned}
& \cdot \int(\alpha \cup \beta)(\zeta)=(\alpha \cup \beta)(\partial \sigma)= \\
& =\sum_{i=0}^{k+l+1}(-1)^{i}(\alpha \cup \beta)\left(\sigma \cdot\left[e_{0}, \ldots, \hat{e}_{i}, \ldots, e_{k+l+1}\right]\right) \\
& =\sum_{i=0}^{k}(-1)^{i} \alpha\left(\sigma \cdot\left[e_{0,1}, \hat{e}_{i, \ldots}, e_{k+1}\right]\right) \beta\left(b_{0}\left[e_{k+1}, e_{k+e+l}\right)\right. \\
& \quad+\sum_{i=k+1}^{k+1}(-1)^{i} \alpha\left(\sigma \cdot\left[e_{0}, \ldots e_{k}\right]\right) \beta\left(\sigma \cdot\left[e_{k r}, \hat{e}_{i}, e_{k+1+1}\right)\right]
\end{aligned}
$$

- $(S \alpha) \cup \beta(\sigma)=(S \alpha)\left(\delta \cdot\left[e_{0}, \ldots, e_{k+1}\right]\right) \cdot \beta\left(b \cdot\left[e_{k+1,}, \ldots, e_{x+e}, \frac{1}{}\right]\right)$ for $i=k+1$

(the sign comes foo the outside)

$$
\sum_{i=k}^{k+1}(-1)^{i-k} \beta\left(\sigma \sigma\left[e_{k}, \hat{e}_{i}, e_{k+1, k}\right]\right)
$$

for $i=k$

$$
(-1)^{k} \alpha\left(6\left[e_{0}, \cdots, e^{2}\right]\right) \cdot \beta\left(\sigma_{0}\left[e_{k+1}, \ldots e_{k+1+1}\right)\right.
$$

the two extra terms in dank green cancel. The rest of the terms are exactly the same as above.

COROLLARY
(1) $u: Z^{k} \times z^{l} \rightarrow z^{k+l}$
(2) $\cup\left(B^{k} \times Z^{e}\right), \cup\left(Z^{k} \times B^{e}\right) \subseteq B^{k+e}$
(3) cup product on cochains induces cup product in cohomologly:

$$
U: H^{k}(x) x H^{l}(x) \rightarrow H^{k+l}(x)
$$

This product is associative and distributive.
(4) If $1 \in R$ is identity element, then $1 \in H^{\circ}(x ; R)$ is also entity element for U giver by cocycle with value (5) the same 1 on all 0 -simplices formula defines also relative cup product.

Proof
(1) If $S \alpha=0$ and $S \beta=0 \Rightarrow S(\alpha \cup \beta)=0$.
(2) If $\alpha=b \gamma^{n} \Rightarrow \alpha \cup \beta=\left(s \gamma^{n}\right) \cup \beta=$

$$
=S(\operatorname{mu} \beta) \pm \gamma^{n} \cup S \beta
$$

(3) Need to verify that cup product is well-defined on equivalence classes:

$$
\begin{gathered}
(\alpha+\text { gr }) \cup \beta=\alpha \cup \beta+S() \\
\underset{\lambda}{\text { distributivity }} .
\end{gathered}
$$

Associativity \& distributivity is clear on the level of cochairs \& it passes to cohomology.
(4)

$$
\begin{aligned}
(1 \cup \alpha)(\sigma) & =1\left(\zeta\left(e_{0}\right)\right) \cdot \alpha(\sigma) \\
& =\alpha(\sigma)
\end{aligned}
$$

(5) $S^{n}(X, A)$ consists of cochains vanishing on simplices in A.
Consider $U: S^{k}(x, A) \times S^{l}(x) \rightarrow S^{k+l}(x, A)$

$$
\begin{aligned}
& \text { If } \quad \sigma \in S_{k+e}(A), \epsilon^{S_{k}(A)} \\
& (\alpha \cup B)(Z)=\underbrace{\alpha(\sigma \circ[\ldots])}_{0} \beta(\sigma \cdot[\ldots]) .
\end{aligned}
$$

Since cup product is associative \& distributive, It is natural to try to make it the multiplication in a ring structure on cohomology groups of a space x.
For this we define

$$
H^{*}(x ; R)=\oplus_{n \geq 0}^{\oplus} H^{n}(x ; R)
$$

Elements of $H^{*}(x ; R)$ are finite sums $\sum \alpha_{i}$ with $\alpha_{i} \in H^{i}(x ; R)$, and the product of two such sums is defined to be

$$
\left(\sum_{i} \alpha_{i}\right)\left(\sum_{j} \beta_{j}\right)=\sum_{i, j} \alpha_{i} \beta_{j}
$$

This makes $H^{*}(X ; R)$ into a ring, with identity if R has identity (see (4) of the previous corollary). This ring is called the COHOMOLOG1 RING.

Taking scalar multiplication into account it is actually an R-algebra. Coefficients may be in any ring R, which we usually suppress in the notation.
THEOREM
Let R be a commutative ring. then $\left(H^{*}(X, A ; R), u\right)$ is graded commutative ie. for $\alpha \in H^{k}(X, A)$, $\beta \in H^{l}(X, A): \alpha \cup \beta=(-1)$ kl $\beta \cup \alpha$. Follows from the 'general' cup product statement.
THEOREM (NATORALITY OF CUP PRODUCT)
Let $f:(x, A) \rightarrow(y, B)$ be a continuolls map of pairs. Then the following diagram commutes:

$$
\begin{aligned}
& H^{k}(x, A) x H^{l}(x) \xrightarrow{u} H^{k+l}(x, A) \\
& \text { 个 } f^{*} \times f^{*} \cup \uparrow_{f^{*}} \\
& H^{k}(y, B) \times H^{l}(y) \xrightarrow{\cup} H^{k+l}(y, B) \\
& \text { ie. } \quad f^{*}(\alpha \cup \beta)=f^{*} \alpha \cup f^{*} \beta \text {. } \\
& \text { Proof } \\
& f_{c}: S .(x) \rightarrow S .(1), \quad \sigma \longmapsto f \circ b \\
& f^{c}: S^{\circ}(1) \longrightarrow S^{\bullet}(x), \alpha \longmapsto \alpha \circ f \\
& f^{c}(\alpha \cup \beta)(z)=(\alpha \cup \beta)(f \circ \gamma)= \\
& =\alpha\left(f \circ b \circ\left[e_{0,-}, e_{k}\right]\right) \beta\left(f \circ b \circ\left[e_{k}, \cdots, e_{k+e}\right]\right) \\
& =f^{c}(\alpha)\left(b \cdot\left[e_{0}, \ldots, e_{k}\right]\right) f^{c}(\beta)\left(b \cdot\left[e_{k}, \ldots, e_{k+1}\right)\right. \\
& =\left(f^{c}(\alpha) \cup f^{c}(\beta)\right)(\sigma)
\end{aligned}
$$

