CUP PRODUCTS: CLOSED SURFACES CLASSIFICATION THEOREM
Any closed surface X is homeomorphic to either s^{2}, a connected sum of n tori $n T, n \geq 1$ if n is orientable, or a connected sum of projective planes $m P, m \geqslant 1$ if P is nonorientable. (X is connected)
The only interesting cup-product is

$$
H^{1}(x) \times H^{1}(x) \xrightarrow{\cup} H^{2}(x) .
$$

Graded commutativity: $\beta \cup \alpha=-\alpha \cup \beta$ (we also say it is skew-symmetric)

$$
\Rightarrow \alpha^{2}=\alpha v \alpha=-\alpha^{2}: 2 \alpha^{2}=0:
$$

α^{2} is a 2 -torsion element
(same thing holds if we have elements of odd dimension)

$$
x \approx S^{2}: H_{1}\left(s^{2} ; \mathbb{Z}\right)=0 \Rightarrow H^{1}\left(s^{2} ; \mathbb{Z}\right)=0
$$

$\lambda_{\text {follows }}$ from UCT

Remark: We defined u using singular chain's but clearly the same formula works for simplicial/ Δ-complexes: these have the advantage of producing smaller chain groups which enable us to actually compute examples

$$
x \approx n T, n \geq 1
$$

X admits a structure of Δ-ox with $4 n$ 2-simplices.

$$
\begin{aligned}
& X=4 n \text {-goo } / \sim \\
& \text { vertices: } P_{1} \sim P_{2} \sim \ldots \sim P_{4 n}
\end{aligned}
$$

order: $P_{0}<P_{i} i>0$ $P_{1}<P_{2}<P_{3}$ $P_{6}<P_{4}<P_{3}$,

After identification all points become geuivalent. homology class

$$
\begin{aligned}
& H_{0}(x)=\mathbb{Z}\left[P_{1}\right] \\
& H_{1}(x)=\bigoplus_{i=1}^{n} \mathbb{Z}\left[a_{i}\right] \oplus \mathbb{Z}\left[b_{i}\right] \\
& H_{2}(x)=\mathbb{Z}[\tau], \tau=\sigma_{1}+\sigma_{2}-\sigma_{3}-\sigma_{u}+\sigma_{5}+\cdots-\sigma_{u n}
\end{aligned}
$$

Since all of these groups are free

$$
H^{k}(x) \cong \operatorname{Hom}\left(H_{k}(x), \mathbb{Z}\right)
$$

Jct
(homology groups are free)
$H^{\circ}(x)=\mathbb{Z} .1 \quad 1$ function assigning 1 to any point

$$
\begin{aligned}
& H^{1}(x)=\bigoplus_{i=1} \mathbb{Z}\left[\alpha_{i}\right] \oplus \mathbb{Z}\left[\beta_{i}\right] \\
& {\left[\alpha_{i}\right] }=\left[a_{i}\right]^{*} \\
& {[\beta] }=\left[b_{i}\right]^{*}
\end{aligned}
$$

α_{i} has to satisfy the cocycle condition, so for each triangle $\left[v_{0}, v_{1}, v_{2}\right]$ the sum of to values
 on $\left[v_{0}, v_{1}\right]$ and $\left[v_{1}, v_{2}\right]$ equals its value on $\left[V_{0}, V_{2}\right]$. Same for β_{i}.
We can choose

$$
\begin{aligned}
& \text { choose } \\
& \alpha_{1}= \begin{cases}1 ; & \text { on } a_{1},\left[P_{0}, P_{2}\right],\left[P_{0}, P_{3}\right] \\
0 ; \text { otherwise }\end{cases} \\
& \beta_{1}=\left\{\begin{array}{l}
1 ; \text { on } b_{1},\left[P_{0}, P_{3}\right],\left[P_{0}, P_{4}\right] \\
0 ; \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Similar for all $\alpha_{i}, B_{i}, i=1, \ldots, n$.

$$
H^{2}(x)=\mathbb{Z}[m], m=\tau^{*} .
$$

Since no 2 -torsion in $H^{2} \rightarrow$

$$
\left[\alpha_{i}\right]^{2}=0,\left[\beta_{i}\right]^{2}=0 .
$$

$$
\begin{aligned}
& \alpha_{1} \cup \beta_{1}\left(\sigma_{1}\right)= \\
= & \alpha_{1}\left(\text { front face } \sigma_{1}\right) \cdot \beta_{1}\left(\text { back face } \sigma_{1}\right) \text { back face } \\
= & 0 \cdot 0=0 \\
& \alpha_{1} \cup \beta_{1}\left(b_{2}\right): \\
= & \alpha_{1}\left(\text { front face } \sigma_{2}\right) \cdot \beta_{1}\left(\text { mace face } \sigma_{2}\right) \cdot \\
= & 1 \cdot 1=1
\end{aligned}
$$

We continue \& get

i	1	2	3	4	74
$\left(\alpha_{1} \cup \beta_{\lambda}\right)\left(\sigma_{i}\right)$	0	1	0	0	0
$\left(\beta_{1} \cup \alpha_{1}\right)\left(\sigma_{i}\right)$	0	0	1	0	0

Why is this not skew symmetric?
They're not the same on the cochin level! In oonomology they should differ
by a sign. $\quad b_{1}+b_{2}-\sigma_{3}-z_{1}+\sigma_{5}+\ldots$
We compute $\left(\alpha_{1} \cup \beta_{1}\right)(t)=1 \Rightarrow \alpha_{1} \cup \beta_{1}=\theta_{11}^{n}$.
T this really is the dual

$$
\left(\beta_{1} \cup \alpha_{1}\right)(\tau)=-1 \Rightarrow \beta_{1} \cup \alpha_{1}=-\gamma^{n}
$$

SUMMARY
$\left[\alpha_{i}\right] \cup\left[\beta_{i}\right]=[\eta n]=-\left[\beta_{i}\right] \cup\left[\alpha_{i}\right] \quad i=1, \ldots, n$ all other products vanish:

$$
\begin{aligned}
& {\left[\alpha_{i}\right] \cup\left[\alpha_{j}\right]=0,\left[\beta_{i}\right] \cup\left[\beta_{j}\right]=0 \quad \forall i, j} \\
& {\left[\alpha_{i}\right] \cup\left[\beta_{j}\right]=0,\left[\beta_{i}\right] \cup\left[\alpha_{j}\right]=0 \text { for } i \neq j} \\
& x \approx m P, m \geq 1
\end{aligned}
$$

X admits a structure of Δ-complex with $2 m$-simplices, $X=2 m$-goo $/ \sim$

vertices: $Q_{1} \sim Q_{2} \sim \ldots \sim Q_{2 m}$
\mathbb{Z}_{2}-coefficients

$$
\begin{aligned}
& H_{0}\left(x ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[Q_{1}\right] \\
& H_{1}\left(x ; \mathbb{Z}_{2}\right)=\mathbb{i = 1} \mathbb{Z}_{2}\left[a_{i}\right] \\
& H_{2}\left(x ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}[\tau] \\
& t=\sum_{i=1}^{2 m} \sigma_{i} \quad\left(\partial t-2 \sum_{i=1}^{m} a_{i}=0\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
& H^{0}\left(x_{i} \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \cdot 1 \\
& H^{1}\left(x ; \mathbb{Z}_{2}\right)=\bigoplus_{i=1}^{m} \mathbb{Z}_{2}\left[\alpha_{1}\right] \\
& \alpha_{1}= \begin{cases}1 ; & \text { on } a_{1},\left[Q_{0}, Q_{2}\right] \\
0 ; & \text { otherwise }\end{cases} \\
& H^{2}\left(x ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[\alpha_{n}\right], m=\tau^{*}
\end{aligned}
$$

$$
\begin{array}{ll}
\left(\alpha_{1} \cup \alpha_{1}\right)\left(G_{1}\right)=0 & \left(\alpha_{1} \cup \alpha_{1}\right)(t)=1 \\
\left(\alpha_{1} \cup \alpha_{1}\right)\left(\sigma_{2}\right)=1 & \Rightarrow \alpha_{1} \cup \alpha_{1}=d_{n}
\end{array}
$$

SUMMARY

$$
\left[\alpha_{1}\right] \cup\left[\alpha_{i}\right]=\left[\alpha_{i}\right]^{2}=\left[\gamma^{n}\right] \quad i=1, \cdots, m
$$

$\left[\alpha_{i}\right] \cup\left[\alpha_{j}\right]=0$ for $i \neq j$
\mathbb{Z}-coefficients

$$
H^{i}(x ; \mathbb{Z})= \begin{cases}\mathbb{Z}_{2}\left[m^{n}\right] & i=2 \\ \sum_{i=1}^{m-1} \mathbb{Z}\left[\beta_{i}\right] & i=1 \\ \mathbb{Z} \cdot 1 & i=0\end{cases}
$$

We can compute cup product on $H^{1}(X ; \mathbb{Z})$ either directly (geometrically) as before or via comparison with \mathbb{Z}_{2}-cup.

$$
\left.\begin{array}{l}
\left(\beta_{1} \cup \beta_{1}\right)\left(\left[Q_{0}, Q_{3}, Q_{n}\right]\right)=-1 \\
\left(\beta_{1} \cup \beta_{1}\right)\left(\left[Q_{0}, Q_{1}, Q_{2}\right]\right)= \\
=\beta_{1}\left(\left[Q_{0}, Q_{1}\right]\right) \cdot \beta_{1}\left(\left[Q_{1}, Q_{2}\right]\right) \\
=1 \cdot 1=1 \\
\left(\beta_{1} \cup \beta_{1}\right)\left(\left[Q_{0}, Q_{2}, Q_{3}\right]\right)=-2
\end{array}\right\} \begin{gathered}
\left(\beta_{1} \cup \beta_{1}\right)(\tau)=-2 \\
\Downarrow \\
\beta_{1} \cup \beta_{1}=-20^{n} \\
\end{gathered}
$$

- algebraic (comparison with $\mathbb{Z}_{2}^{-c o f f f)}$ Coefficient homomorphusin $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{2}$, $n \mapsto n(\bmod 2)$ induces a cochain $\operatorname{map} \varphi_{c}: S \cdot(x ; \mathbb{Z}) \rightarrow S \cdot\left(x_{i} \mathbb{Z}_{2}\right)$ and is in turn a homomorphism on
cohomology $\varphi_{*}: H^{*}(x, \mathbb{Z}) \rightarrow H^{*}\left(x ; \mathbb{Z}_{2}\right)$.

$$
\begin{aligned}
& H^{1}(x ; \mathbb{Z}) x H^{1}(x ; \mathbb{Z}) \xrightarrow{u} H^{2}(x, \mathbb{Z})=\mathbb{Z}_{2}\left[\gamma_{n}^{n}\right] \\
& \int_{*} \varphi_{*} \times \varphi_{*} \quad \varphi_{*}=i \dot{a} \\
& H^{1}\left(x, \mathbb{Z}_{2}\right) \times H^{1}\left(x ; \mathbb{Z}_{2}\right) \rightarrow H^{2}\left(x ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[\gamma^{r}\right]
\end{aligned}
$$

What this tells us:
Since $\left[\beta_{1}\right]$ evaluates to 1 on $\left[a_{1}\right]$ and to -1 on $\left[a_{i+1}\right]$,

$$
\varphi_{*}\left(\left[\beta_{i}\right]\right)=\left[\alpha_{i}\right]-\left[\alpha_{i+1}\right]=\left[\alpha_{i}\right]+\left[\alpha_{i+1}\right]
$$

From the commutativity of the above diagram we get

$$
\begin{gathered}
\left(\left[\beta_{1}\right],\left[\beta_{j}\right]\right) \stackrel{\cup}{\longmapsto}\left[\beta_{i}\right] \cup\left[\beta_{j}\right] \\
\int \varphi_{*} \times \varphi_{*} \\
I \varphi_{x}
\end{gathered}
$$

$$
\begin{aligned}
& \left.\left[\alpha_{i}\right]+\left[\alpha_{i+1}\right],\left[\alpha_{j}\right]+\left[\alpha_{j+1}\right]\right) \mapsto\left[\alpha_{i}\right] \cup\left[\alpha_{j}\right]+ \\
& {\left[\alpha_{i}\right]\left[\alpha_{j+i}\right]+\left[\alpha_{i+1}\right] \cup\left[\alpha_{j}\right]+\left[\alpha_{i+1}\right] \cup\left[\alpha_{j+1}\right]}
\end{aligned}
$$

We may assume icj since changing the order changes the sign which Can't be seen $\bmod 2$.

$$
\begin{aligned}
& i=j:\left[\alpha_{i}\right]^{2}+\left[\alpha_{i+1}\right]^{2}=2[m]=0 \\
& j=i+1:\left[\alpha_{i+1}\right] \cup\left[\alpha_{j}\right]=[m] \\
& j>i+1: 0
\end{aligned}
$$

SUMMARY

$$
\begin{aligned}
{\left[\beta_{i}\right] \cup\left[\beta_{i+1}\right]=[m]=} & {\left[\beta_{i+1}\right] \cup\left[\beta_{i}\right] } \\
& i=1, \ldots, m-2
\end{aligned}
$$

$\left[\beta_{i}\right] \cup\left[\beta_{j}\right]=0$, for $|i-j| \neq 1$ EXAMPLE
Product structure can distinguish homotopy type when groups fail to do so.

$$
\begin{aligned}
& X= S^{1} \times S^{1}=T \\
& H^{*}(x): \stackrel{1}{\mathbb{Z}}, \mathbb{Z}^{2}, \mathbb{Z}^{\mathbb{Z}} \quad \text { nontrivial } \\
& \mathbb{Z} \alpha \oplus \mathbb{Z} \beta \\
& \mathbb{Z}_{\gamma^{n}} \text { product } \alpha \cup \beta=\gamma^{n}
\end{aligned}
$$

$$
I=S^{1} \vee S^{1} \vee S^{2}
$$

$$
H^{*}(y) \cdot \stackrel{0}{\mathbb{Z}} \quad \stackrel{1}{\mathbb{Z}}^{2} \quad \stackrel{2}{\mathbb{Z}}
$$

product is trivial
Δ-complex structure

Simplicial chain complex

$$
\begin{aligned}
& \left.\begin{array}{ccc}
c_{1} & -1 & -1 \\
c_{2} & 1 & 1 \\
a & 0 & 0 \\
b & 0 & 0
\end{array}\right] \\
& \begin{array}{l}
P_{0} \\
P_{1} \\
P_{2}
\end{array}\left[\begin{array}{ccccc}
0 & -1 & -1 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right] \\
& \text { dualize } \tau=\sigma_{1}+\sigma_{2} \\
& 0 \leftarrow \mathbb{Z}\left[b_{1}^{*}, b_{2}^{*}\right] \stackrel{b_{2}}{\leftarrow} \mathbb{Z}\left[c_{1}^{*}, c_{1}^{*}, c_{2}^{*}, a^{*}, b^{*}\right] \stackrel{b_{1}}{\leftarrow} \mathbb{Z}\left[p_{0}^{*}, p_{1}^{*}, p_{2} \in 0\right.
\end{aligned}
$$

$$
\begin{aligned}
& H^{0}(4 ; \mathbb{Z}) \cong \mathbb{Z} \cdot 1 \\
& \operatorname{lm} J_{1}=\left\langle c^{*}+c_{1}^{*}, c_{2}^{*}-c^{*}\right\rangle \\
& S_{2}=\sigma_{b_{2}^{*}}^{\sigma_{2}^{*}}\left[\begin{array}{ccccc}
c^{*} & c_{1}^{*} & c_{2}^{*} & a^{*} & b^{*} \\
1 & -1 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
c^{*} & c_{1}^{*}+c^{*} & c_{2}^{*}-c^{*} & a^{*} & b^{x} \\
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{ken} S_{2}=\left\langle c_{1}^{*}+c^{*}, c_{2}^{*}-c^{*}, a^{*}, b^{*}\right\rangle \\
& \left.H^{1}(y ; \mathbb{Z}) \cong \operatorname{kers}_{2} / m S_{1}=\left\langle c_{1}^{*}+c^{*}, c_{2}^{*}-c^{*}, a^{*}, b^{*}\right\rangle / c_{1}^{*}+c^{*}, c_{2}^{*}-c^{*}\right\rangle \\
& \simeq \mathbb{Z}\left[a^{*}, b^{*}\right]=\mathbb{Z}[\alpha, \beta] \\
& \alpha=a^{*} \\
& \beta=b^{*} \\
& H^{2}(\Psi ; \mathbb{Z}) \cong \mathbb{Z}\left[U^{*}\right]=\mathbb{Z}\left[x^{n}\right] \\
& \alpha \cup \beta\left(\partial_{1}\right)=\alpha\left(\sigma_{1}\left[P_{0}, P_{1}\right]\right) \beta\left(\sigma_{1}\left[P_{1}, P_{2}\right]\right)= \\
& \left.\begin{array}{r}
=0 \\
\alpha \cup \beta\left(\sigma_{2}\right)=0
\end{array}\right\} \alpha \cup \beta=0
\end{aligned}
$$

$A l s o, \alpha \cup \alpha=0 \& \beta \cup \beta=0$

