Exercise: Using the $\Delta$-complex structure of torus T calculate its cohomology ring. Solution We use the following $\Delta$-structure:


The associated homology $\Delta$-complex is

$$
0 \rightarrow \mathbb{Z}\left(\sigma_{1}, \sigma_{2}\right) \xrightarrow{d_{2}} \mathbb{Z}(a, b, c) \xrightarrow{d_{1}} \mathbb{Z}(p) \rightarrow 0
$$

with

$$
d_{1}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \quad d_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & 1 \\
-1 & -1
\end{array}\right]
$$

and we have already seen that

$$
H_{0}(T)=\mathbb{Z}(p) \quad H_{1}(T)=\mathbb{Z}(a) \oplus \mathbb{Z}(b) \quad H_{2}(T)=\mathbb{Z}\left(\sigma_{1}-\sigma_{2}\right)
$$

Turning to cohomology we get (using the dual basis)

$$
0 \leftarrow \mathbb{Z}\left(\bar{\sigma}_{1}, \bar{\sigma}_{2}\right) \stackrel{\delta_{2}}{\leftarrow} \mathbb{Z}(\bar{a}, \bar{b}, \bar{c}) \stackrel{\delta_{1}}{\leftarrow} \mathbb{Z}(\bar{p}) \leftarrow 0
$$

with

$$
\delta_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \delta_{2}=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & -1
\end{array}\right]
$$

So

$$
\begin{gathered}
H^{0}(T)=\mathbb{Z}(\bar{p}) \\
H^{1}(T)=\operatorname{ker} \delta_{2}=\mathbb{Z}(\bar{a}+\bar{c}) \oplus \mathbb{Z}(\bar{b}+\bar{c})
\end{gathered}
$$

Note that

$$
(\bar{a}+\bar{c})(a)=1 \quad(\bar{a}+\bar{c})(b)=0
$$

and

$$
(\bar{b}+\bar{c})(a)=0 \quad(\bar{b}+\bar{c})(b)=1
$$

so the cocycle $\bar{a}+\bar{c}$ corresponds to $\bar{a}=h(\bar{a}+\bar{c}) \in \operatorname{Hom}\left(H_{1}(T) \cong \mathbb{Z}(a) \oplus \mathbb{Z}(b), \mathbb{Z}\right)$. Similarly $\bar{b}+\bar{c}$ corresponds to homomorphism $\bar{b} \in \operatorname{Hom}\left(H_{1}(T), \mathbb{Z}\right)$. So

$$
H^{1}(T ; \mathbb{Z}) \cong \mathbb{Z}(\bar{a}) \oplus \mathbb{Z}(\bar{b})
$$

$\left(\right.$ Here $\bar{a}: H_{1}(T) \rightarrow \mathbb{Z}$ and $\left.\bar{b}: H_{1}(T) \rightarrow \mathbb{Z}\right)$
Next

$$
H^{2}(T ; \mathbb{Z}) \cong \mathbb{Z}^{2} / \mathbb{Z}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \cong \mathbb{Z}\left(\bar{\sigma}_{1}\right)
$$

(in $H^{2} \bar{\sigma}_{1}=-\bar{\sigma}_{2}$ ) Let us see how the cup product works. The 0 -cocycle $\bar{p}$ is the unit:

$$
\begin{aligned}
& (\bar{p} \cup(\bar{a}+\bar{c}))(a)=\bar{p}(p)(\bar{a}+\bar{c})(a)=1 \\
& (\bar{p} \cup(\bar{a}+\bar{c}))(b)=\bar{p}(p)(\bar{a}+\bar{c})(b)=0 \\
& (\bar{p} \cup(\bar{a}+\bar{c}))(c)=\bar{p}(p)(\bar{a}+\bar{c})(c)=1
\end{aligned}
$$

so $\bar{p} \cup(\bar{a}+\bar{c})=\bar{a}+\bar{c}$. Similarly $\bar{p} \cup(\bar{b}+\bar{c})=\bar{b}+\bar{c}$.

$$
\begin{aligned}
& \bar{p} \cup\left(\bar{\sigma}_{1}\right)\left(\sigma_{1}\right)=\bar{p}(p) \bar{\sigma}_{1}\left(\sigma_{1}\right)=1 \\
& \bar{p} \cup\left(\bar{\sigma}_{1}\right)\left(\sigma_{2}\right)=\bar{p}(p) \bar{\sigma}_{1}\left(\sigma_{2}\right)=0
\end{aligned}
$$

so $\bar{p} \cup\left(\bar{\sigma}_{1}\right)=\bar{\sigma}_{1}$. Next

$$
\begin{aligned}
& (\bar{a}+\bar{c}) \cup(\bar{a}+\bar{c})\left(\sigma_{1}\right)=(\bar{a}(a)+\bar{c}(a))(\bar{a}(b)+\bar{c}(b))=0 \\
& (\bar{a}+\bar{c}) \cup(\bar{a}+\bar{c})\left(\sigma_{2}\right)=(\bar{a}(b)+\bar{c}(b))(\bar{a}(a)+\bar{c}(a))=0
\end{aligned}
$$

so $(\bar{a}+\bar{c}) \cup(\bar{a}+\bar{c})=0$.

$$
\begin{aligned}
(\bar{b}+\bar{c}) \cup(\bar{b}+\bar{c})\left(\sigma_{1}\right) & =(\bar{b}(a)+\bar{c}(a))(\bar{b}(b)+\bar{c}(b))=0 \\
(\bar{b}+\bar{c}) \cup(\bar{b}+\bar{c})\left(\sigma_{2}\right) & =(\bar{b}(b)+\bar{c}(b))(\bar{b}(a)+\bar{c}(a))=0
\end{aligned}
$$

so $(\bar{b}+\bar{c}) \cup(\bar{b}+\bar{c})=0$.

$$
\begin{aligned}
& (\bar{a}+\bar{c}) \cup(\bar{b}+\bar{c})\left(\sigma_{1}\right)=(\bar{a}(a)+\bar{c}(a))(\bar{b}(b)+\bar{c}(b))=1 \\
& (\bar{a}+\bar{c}) \cup(\bar{b}+\bar{c})\left(\sigma_{2}\right)=(\bar{a}(b)+\bar{c}(b))(\bar{b}(a)+\bar{c}(a))=0
\end{aligned}
$$

so $(\bar{a}+\bar{c}) \cup(\bar{b}+\bar{c})=\bar{\sigma}_{1}$.

$$
\begin{aligned}
(\bar{b}+\bar{c}) \cup(\bar{a}+\bar{c})\left(\sigma_{1}\right) & =(\bar{b}(a)+\bar{c}(a))(\bar{a}(b)+\bar{c}(b))=0 \\
(\bar{b}+\bar{c}) \cup(\bar{b}+\bar{c})\left(\sigma_{2}\right) & =(\bar{b}(b)+\bar{c}(b))(\bar{b}(a)+\bar{c}(a))=1
\end{aligned}
$$

so $(\bar{b}+\bar{c}) \cup(\bar{b}+\bar{c})=\bar{\sigma}_{1}$.
We already mentioned that $\bar{\sigma}_{1}=-\bar{\sigma}_{2}$ which is in accordance with $(\bar{a}+\bar{c}) \cup$ $(\bar{b}+\bar{c})=-(\bar{b}+\bar{c}) \cup(\bar{a}+\bar{c})$.

Also $\bar{\sigma}_{1}\left(\sigma_{1}-\sigma_{2}\right)=1$, so we can view everything in $H^{*}$ as elements of $\operatorname{Hom}\left(H_{*}, \mathbb{Z}\right)$. Then

$$
H^{0}(T ; \mathbb{Z})=\mathbb{Z}(\bar{p})
$$

( $\bar{p}$ being the homomorphism that maps generator of $H_{0}(T)$ to 1 ).

$$
H^{1}(T ; \mathbb{Z})=\mathbb{Z}(\alpha) \oplus \mathbb{Z}(\beta)
$$

( $\alpha$ being the homomorphism that maps generator $a$ of $H_{1}(T)$ to 1 and $b$ to 0 and $\beta$ mapping $a$ to 0 and $b$ to 1 ).

$$
H^{2}(T ; \mathbb{Z})=\mathbb{Z}(A)
$$

( $A$ being the homomorphism that maps generator $\sigma_{1}-\sigma_{2}$ of $H_{2}(T)$ to 1).
Aditionally $\alpha \cup \alpha=\beta \cup \beta=0$ and $\alpha \cup \beta=A=-\beta \cup \alpha$.
The result is

$$
H^{*}(T ; \mathbb{Z})=\mathbb{Z}[\alpha, \beta]
$$

i.e. a free Abelian group with basis of all possible products of $\alpha, \beta$ subject to

$$
\alpha^{2}=0 \quad \beta^{2}=0 \quad \beta \alpha=-\alpha \beta
$$

