MANIFOLDS & POINCARE DUALITY DEFINITION A topological manifold of dim m is a top. space M s.t. (1) M is Mausdorff. (2) VXEM, F a nobul UxCM of x and a homeo $\Psi_x : \mathbb{R}^n \xrightarrow{\mathcal{R}} \mathcal{V}_x$ I called a chart around x (wlog we may assume $Y_{x}(0) = X$) (3 second countable) we won't need this hyperboloid $X^2+y^2-z^2=1$ Manifold v USR2 YX Y \mathbb{R}^{n} \approx cone Ŷx not a manifold EXAMPLES

DM=Rn, or M=open subset in Rn is a manifold

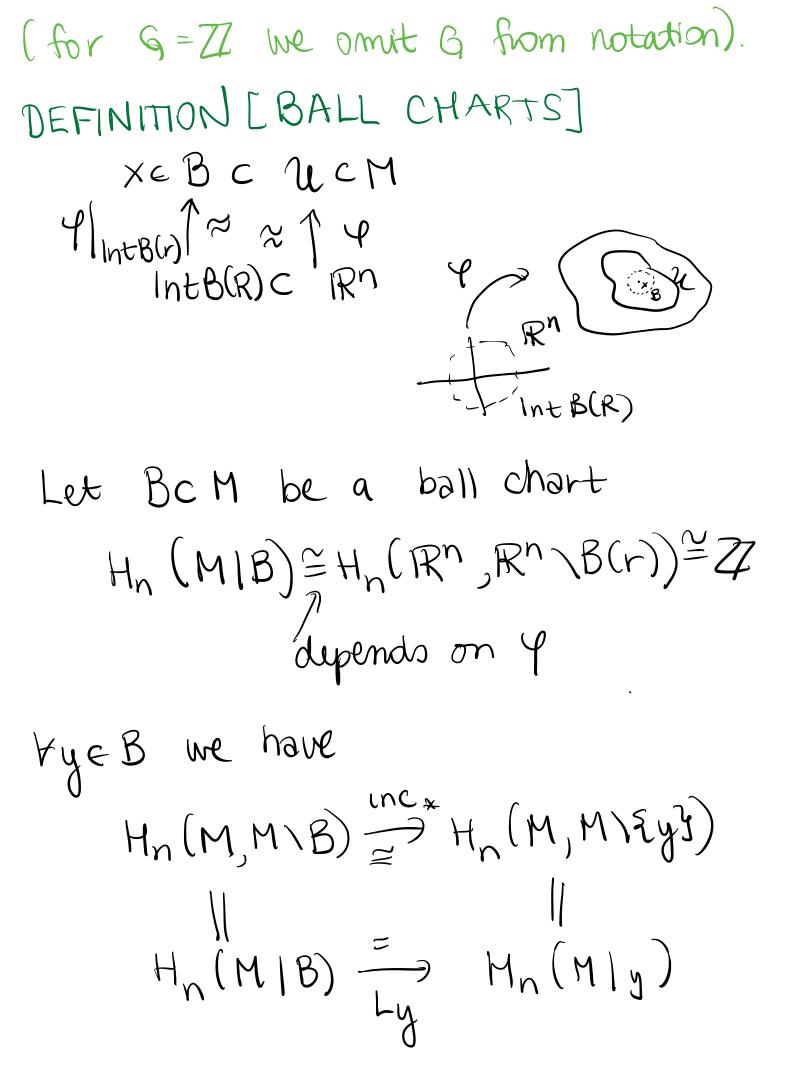
2 M=Sn. We can cover Sn by two charts: SM(ENJ, SM) [S]. Another option W 2n+2 charts $\mathcal{U}_{\lambda}^{T} = \left\{ \left(X_{1}, \dots, X_{n+1} \right) \in S^{n} : X_{\lambda}^{*} > 0 \right\}$ $\mathcal{U}_{\lambda}^{-} = \left\{ \left(X_{\lambda}, \dots, X_{n+1} \right) \in S^{n} : X_{\lambda} < 0 \right\}$ $\tilde{u}=4,..,n+4$. $\mathcal{U}_{\tilde{u}}^{\pm} \approx \operatorname{Int} B^{h}(\tilde{n}) \approx \mathbb{R}^{h}$ this option is great because it gives charts on RPn (take $g(\mathcal{U}_i^{\dagger}) = g(\mathcal{U}_i^{\dagger})$). (3) $\mathbb{R}P^{n} = S^{n}$ $\mathcal{Q}: S^{n} \to \mathbb{R}P^{n}$ $\mathcal{Q}[\mathcal{U}_{i}^{\dagger}]$ is $\mathcal{T}(x \sim -x \forall x \in S^{n})$ $\Rightarrow \mathbb{R}P^{n}$ is an m-dim manifold. (4) $M_1 = n_1$ -dim manifold $M_2 = n_2$ -dim manifold \Rightarrow $M_1 \times M_2$ is an $(M_1 + M_2)$ -dim manifold. (so T=S1 × S1 ×... ×S1 is an m-dim mnfd) (5) A 2-dim manifold is called a surface. this includes connected, closed surfaces

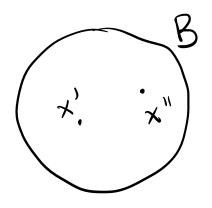
 $\stackrel{\sim}{=} \widetilde{H}_{i-1} \left(\mathbb{R}^n \setminus \{0\} \right) \stackrel{\sim}{=} \widetilde{H}_{i-1} \left(S^{n-1} \right)$ ⁽¹⁾because $\widetilde{H}_i(\mathbb{R}^n) = 0$ = $H_i(M, M \setminus \{x\}) = 0 \quad \forall i \neq n \text{ and}$ Hn (M, M (Ex)) = infinite cyclic group ΞZ We call Hi (M, MIEXY) the LOCAL HOMOLOGY of Matx. DEFINITION LOCAL ORIENTATION of M at X is a choice of a generator $\mu_x \in H_n(M, M \setminus \{x\})$ infinite cyclic group

F exactly two possible local orientections $M_X & -M_X$.

(image) REMARK If UxcM is a chart, then Jux inducés local orientations juy for all ye Ux. Indeed, fix $Y_x: \mathbb{R}^n \to \mathcal{V}_x$, let ye \mathcal{V}_x and let Boc Rn be a bold that contains both $P_{x}^{-1}(x) \& P_{x}^{-1}(y)$ Put $B := P_{x}(B_{0}) cU_{x}$. then $H_n(M_1(x)) \cong H_n(\mathbb{R}^n, \mathbb{R}^n, \varphi_x^{-1}(x))$ \mathcal{F} $\mathcal{H}_{h}(\mathbb{R}^{n},\mathbb{R}^{n},\mathbb{B}_{a}) \cong \mathcal{H}_{n}(\mathbb{R}^{n},\mathbb{R}^{n},\mathbb{Y}^{-1}(y))$ \cong H_n (M, M\{y\}) The composition of these 1000 gives us an loo $H_n(M,M) \in XJ) \xrightarrow{=} H_n(M,M) \in YJ)$

NOTATION: ACM Subset. We'll wite Hi (M/A;G):= Hi (M,M\A;G). The local homology of M at A

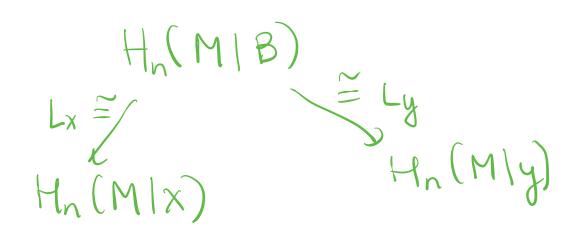




$\forall x', x' \in B \quad we get$ $H_n(M|x') \xrightarrow{\simeq} H_n(M|x'')$ $L_{x'} \xrightarrow{\simeq} H_n(M|B) \xrightarrow{\simeq} L_{x''}$

ORIENTATION

Let M be an M-manifold. An ORIENTATION of M is a function M & X & M, with M × & Hn (M I ×), that assigns fixe M a local orientation M × S.t. Fixe M & a chart U around x and a ball chart B CU s.t.



 $LyL_{X}^{-1}(yu_{X})=My \forall y\in B$. Or, in other words, JMBEHn (MIB) a generator s.t. Ly (MB)=My tytB. If an orientation on M exists we say M is orientable. When we fix an orientation, we say M is oriented. ORIENTATION 2-SHEETED COVER

(we do not repuire that a covering space $X \rightarrow Y$ is connected).

Let M be an m-manifold.

 $M := \{(X, gu_X) : X \in M, gu_X \text{ is a}\}$ local orientation of Mat X, i.e. Juxe Hn (MIX) is a generation y $p: \widetilde{M} \rightarrow M \quad p(x, yx) := X$ 2:1 map $p^{-1}(x) = \{(x, y, x), (x, -y, x)\}$ Topology on M Let BCUCM be a chart and a ball chart. Let MBE Hn(MIB) be a generator. V reB, we have an 180 $H_n(M | B) \xrightarrow{L_X} H_n(M | x).$ Put $W(\mu_B) := \{(x, \mu_X) : X \in B, \mu_X = L, \mu_B\}$ The sets EW (JUB) JU, MB form a basis of a topology on M (exercise).

Moreover,
$$p: \tilde{M} \rightarrow M$$
 sends $W(M_B)$
homeomorphically onto B.
Conclusion: M is an m-manifold \mathcal{R}
p is a 2:1 covering.
Moreover, \tilde{M} is orientable.
Induct, an Orientation on \tilde{M}
is given by
 $(X, M_X) \mapsto \tilde{M} \in H_n (\tilde{M} | (X, M_X))$
 $H_n (W(M_B) | (X, M_X))$
 $H_n (B|X) \cong H_n(M|X)$
Where \tilde{M} corresponds to M_X
 M_X under the above iso.

THEOREM

Assume M is a connected n-manifold. then M has at most two connectus components. Moreover, M is orientable THE PT has two connected components. In particular, if M is simply connected or more generally, if Tr (M) has no subgroup of index 2, then M is orientable. For the proof, we need the following LEMMA Let p: X > Y be a 2:4 covering, with I path-connected. Then

(1) X is path connected TJ Fabop
(1) X is path connected TJ Fabop
(1) M in Y that lifts to a non-closed
(2) path in X.

(2) X can have at most two path-conn. components. When it has two, re. $X = X' \sqcup X''$, then $p|_{X'} : X' \rightarrow Y$, $p|_{X''} : X' \rightarrow Y$ are homeomorphisms. We'll first pour the theorem. Proof of theorem Assume M is orientable. => Jan embedding j: M (M) coming from a choice of orientation f(x) = (x, y, x)and $j'(x) = (x, -yx), j' : M \hookrightarrow M$ Clearly, j' is also an embedding. Also, imj \cap imj $= \phi =$ $M = j(M) \perp j'(M)$ Conversely, suppose M is disconnected, $\widetilde{M} = C_1 \coprod C_2$. By the lemma

Pl_c, C₁→M is a homes. and we obtain an orientation on M. Now if T(M) has no subgroups of Index 2 => any covering 2:1 X-M is disconnected (bc path connected coverings d:1 are m 1-1 correspondence with Subgroups of index d of T₁(M)).

Proof of Lemma (1) Let $p: X \rightarrow Y$ be a 2:1 covering. Take $y \in Y \cdot p^{-1}(y) = \{x_1, x_2\}$ since $p: X \rightarrow Y$ is a 2-sheeted cover. We have a path proph is a closed loop, x_1 . while its lift is a non-closed path. $y \rightarrow Y$

Conversely, suppose $m: I \rightarrow X$ is a loop with $\mathfrak{m}(0) = \mathfrak{m}(1) = X_0 \in \mathcal{I}$, and mis a lift of m with m(0)=x', $\mathfrak{F}(1) = \chi_0^{"}, \chi_0^{'} \neq \chi_0^{"}$. Now take any point XeX. Put X:=p(X). I is path-connected, so take a path a in Y with $d(0) = X, d(1) = X_0$. By lifting & starting at X we get a path from X to one of X,' or X." But x, 2x, are in the same path-connected component of X. \Rightarrow is also in that component. this proves statement 1. 2) suppose X is not path-connected. Let x' be a path-connected comp.

of X. Obviously, Y2 points X1, X2 EX' with $x_1 \neq x_2$ we have $p(x_1) \neq p(x_2)$ otherwise we'll have a non-closed path in X' which projects under p to a loop in 1. Contradiction, by (1), Also, p(x')=Y because griven ge I just choose xoe X put $X_{o} := p(x_{o})$, take a path $m: I \rightarrow Y$ with $gn(0) = x_0 \& gn(1) = y$ and now lift on to a path $\tilde{\sigma}: \underline{T} \rightarrow X$ with $m(0) = x_0!$ then $\tilde{m}(1) \in X!$ & $p(p(\Lambda)) = y \cdot So, p \cdot X' \rightarrow Y$ is 1-1. By the diginition of a covering space, p is a local homeo => p is a homeo. The fact that $\# \mathcal{N}_o(x) = 2$ is straightforward.

ANOTHER USEFUL COVERING SPACE
Define
$$M_{ZZ} = \{(x, d_x): x \in M, d_x \in H_n(M|x)\}$$

 d_x is not necessarily a generator.
 $p: M_{ZZ} \rightarrow M \quad p(x, d_x):=x.$
Topology on M_{ZZ}
Let BCM be a ball chart
 $W(a_B) = \{(x, d_x) \in M_{Z}: x \in B, L_x(a_B) = d_x\}$
this is a basis for a topology on
 M . Inside M_{ZZ} we have $M_{\partial x} M$,
 $\sum_{x \in A} (x, d_x) := x \in M$

the rest of MZZ consists of an infinite sequence of copies MK, where

 $M_{k} = \mathcal{L}(x, d_{x}): x \in M, d_{x}$ is k-times a generator of $H_{m}(M|x)$

KKE Z

DEFINITION Let X By be a covering. A SECTION s: Y > X is a continuous map $s: \Upsilon \rightarrow \chi s: t - \rho \circ s = Id_{\chi}$ P J S Y So, an orientation on M is a section $M: M \rightarrow \widetilde{M}$. Or, a section $d: M \to \widetilde{M}_{Z}$ with $d_x \in H_n(M|x)$ × h dx a generator 7x. A further generalization Let R be a commutative ring with a unity le R. C free R-module of vank 1 $H_n(M|_{X'},R) \cong R$ local R-orientation at x is A

a choice of a generator uer, ie. $R = R \cdot \mu$. Of course, two generators $\mu, \nu \in R$ differ by an invertible element V= Z.M., ZER invertible. Define MR similarly to MZ. DEFINITION An R-ORIENTATION on M, is a section M:M->MR s.t. YXEM Mx is a generator of Hn(M|X;R). Exercise this definition is equivalent to the previous one for $R = \mathbb{Z}$. REMARK $H_{n}(M|x;R)\cong H_{n}(M|x) \otimes R \Rightarrow$ inside MR we have Mrc MR trek mx is the first E(x, ±mx &r): x ∈ M}

Note that if 2r=0 (ie r=-r), then $M_r = M$. If $2r \neq 0 \Rightarrow M_r \approx M$. Conclusion (1) If M is orientable then it is R-orientable for every ring R (2) Let M be a non-orientable mamfold & R a ring with a unit of order 2 (ie 2=0 in R) =>M is R-orientable. In particular, any manifold is Z, - orientable.