THEOREM
Let M be a compact connected n-manifold.
(1) If M is R-orientable then the map

$$
H_{n}(M ; R) \stackrel{L x}{\longrightarrow} H_{n}(M \mid x ; R) \cong R
$$

is an iso $\forall x \in M$.
(2) If M is not R-orientable, then $\forall x \in M$ the map

$$
H_{n}(M ; R) \stackrel{L_{x}}{\longrightarrow} H_{n}(M \mid x ; R) \cong R
$$

is infective and its image is $\{a \in R: 2 a=0\}$.
(3) $H_{i}(M ; R)=0 \quad \forall i>n$.

So, if M is orientable, then $H_{n}\left(M_{i} \mathbb{Z}\right) \cong \mathbb{Z}$. If not $\Rightarrow H_{n}(M ; Z)=0$.

REMARKS
(1) Suppose M is R-orientable and let μ be an R-orientation Let $x \in M$
and consider $\mu_{x} \in H_{n}(M \mid x ; R)$. By (1) of the Theorem we get a class $a^{x} \in H_{n}(M, R)$ s.t. $a^{x} \stackrel{L_{x}}{\longrightarrow} \mu_{x}$. Consider $y \in M$, lying in the same ball chart as x.

$$
\begin{aligned}
& L_{x}(C) \subset y_{n}(M ; B) \\
& H_{n}(M \mid x ; R) \leftrightarrow H_{n}(M \mid B ; R) \rightarrow H_{n}(M \mid y ; R)
\end{aligned}
$$

Consider $\mu_{y} \in H_{n}(M \mid y ; R)$ coming from $\mu . \Rightarrow L_{y}\left(a^{x}\right)=\mu_{y}$.
If M is connected, all the above works even if $x \& y$ are not in the same ball chant.

Also, if $a \in H_{n}(M ; R)$ a generator \Rightarrow
$M \exists x \longmapsto \mu_{x} i=L_{x}(a)$ is an orientation
So R orientations on a compact
$M \leftrightarrow$ generators of $H_{n}(M ; R)$
A choice of a generator, in case M is compact and orientable of $H_{n}(M, R)$ is calleol a FUNDAMENTAL CLASS
Notation let M be a compact R-oriented n-manifold. We denote by $[M] \in H_{n}(M ; R)$ the fundamental class corresponding to the given orientation.
(2) If M, an M-manifold, has a class $a \in H_{n}(M, R)$ st. a induces an orientation by $x \mapsto L_{x}(a)$, then M is compact.
PROOF
Let δ be a cycle representing a.

Clearly $\operatorname{im}(Z)=$ compact.

$$
\left(\begin{array}{l}
\text { union of the } \\
\text { images of the } \\
\text { simplies participating } \\
\text { in } 6
\end{array}\right)
$$

So if $x \in M \backslash \lim (z) \Rightarrow$

$$
\begin{aligned}
& L_{x}([\zeta])=0 \in H_{n}(M \mid x ; R) \\
& \Rightarrow \operatorname{lm}(6)=M \\
& \text { (6) lies entirely in } \\
& \text { in } H_{n}(M \mid x ; R) \text {) }
\end{aligned}
$$

To prove the theorem we need the following lemma:
LEMMA
Let M be an n-manifold. Let $A C M$ be a compact subset. Then
(1) If $M \partial x \longmapsto \alpha_{x} \in H_{n}(M \mid x ; R)$ is a section of $\tilde{M}_{R} \rightarrow M$ then \exists a unique $\alpha_{A} \in H_{n}(M \mid A ; R)$ st.

$$
L_{x}\left(\alpha_{A}\right)=\alpha_{x} \quad \forall x \in A .
$$

(2) $H_{i}(M \mid A ; R)=0 \quad \forall i>n$.

Proof of the theorem (assuming the lemma) By assumption $M=$ compact, so we can take $A=M$ in the lemma.

$$
H_{k}(M \mid A ; R)=H_{k}(M, \phi ; R)=H_{k}(M ; R)
$$

\Rightarrow (3) of the theorem follows from the lemma.
Denote by Γ_{R} the set of sections $\tilde{M}_{R} \rightarrow M$. Note that Γ_{R} is an R-module (we con add sections and also multiply a section by $r \in R$).
exercise: these operations preserve continuity
We have a homo. $H_{n}(M, R) \xrightarrow{\theta} \Gamma_{R}$

$$
H_{n}(M ; R) \ni a \stackrel{\theta}{\longmapsto}\left(M \ni \times \longmapsto L_{x}(a)\right) \in \Gamma_{R} .
$$

By the lemma θ is an iso.
Pick $x_{0} \in M$. We have a 'restriction' \tilde{M}_{R} given gu x_{0} $\operatorname{map} \rho: \Gamma_{R} \rightarrow H_{n}\left(M \mid x_{0} ; R\right)=\left(\tilde{M}_{R}\right)_{x_{0}}^{\swarrow} \cong R$ P is injective (follows from uniqueness of lifts in covering spaces).
If M is R-orientable then ρ is an io. \tilde{M}_{R} is isomorphic to R copies of Sr, Mlone copy of M for each so $\geqslant 0$ s. $r \in R$). Each section is a $\tilde{M}_{R}\left(\int \sum_{s, r} \text { r }\right)^{\text {constant function \& therefore }}$ determined by the value in a single point.

$$
\Rightarrow H_{n}(M ; R) \xrightarrow{\theta} \Gamma_{R} \xrightarrow{\rho} H_{n}(M \mid X ; R) \cong R
$$

is an iso $\forall x \in M$.
If M is not R-orientable, then $\Gamma_{R} \xrightarrow{\rho} H_{n}(M \mid x ; R)$ is only infective

Clearly, $\operatorname{im}(\rho)=\left\{a \in H_{n}(M \mid X ; R):-a=a\right\}$, because $\forall r \in R$ with $2 r \neq 0$ we have $\tilde{M}_{r} \approx \tilde{M}$. If M is not R-orientable, it is not \mathbb{Z}-orientable.
Exercise: finish the details as an exercise.

To prove the lemma we need the following version of $M-V$ LES:
THEOREM
Let X be a space, ICX a subspace.
Let $Q, R \subset X$ sit. $\ln t Q u \ln t R=x$

$$
\text { U } U C \subset \text { st. } \ln t S \cup \ln t T=1
$$

Then \exists a LES

$$
\rightarrow H_{k}(Q \cap R, S \cap T)^{\Phi} \rightarrow H_{k}(Q, S) \oplus H_{k}(R, T) \rightarrow{ }_{\rightarrow}^{\psi} H_{k}(x, y) \rightarrow \ldots
$$

Where $\Phi(x)=(x,-x), \Psi(x, y)=x+y$. the theorem works with coefficients in any group.
Proof
See Hatcher.
COROLLARY
Let M be an M-manifold, $A, B C M$ compact. Then we have a LES

$$
\rightarrow H_{k}(M \mid A \cup B) \xrightarrow{\Phi} H_{k}(M \mid A) \oplus H_{k}(M \mid B)^{\Psi} \Rightarrow H_{k}(M \mid A \cap B) \rightarrow
$$

Proof

$$
\begin{aligned}
& \text { Take } Q=R=M=x, y=M \backslash(A \cap B), \\
& S=M \backslash A, T=M \backslash B .
\end{aligned}
$$

NOTATION BCACX.

$$
H_{k}(x \mid A) \xrightarrow{L_{A B}} H_{k}(x \mid B)
$$

The map induced by the inclusion $(x, x \backslash A) \rightarrow(X, X \backslash B)$.
PROOF OF LEMMA
Step 1 If the Irma holds for two sulosets A \& B \& their intersection, then it also holds for the union $A \cup B$.
Proof of Step 1 We use Mr.

$$
\rightarrow H_{k}(M \mid A \cup B) \stackrel{\Phi}{\Phi} H_{k}(M \mid A) \oplus H_{k}(M \mid B)^{\stackrel{\varphi}{\leftrightarrows}} H_{k}(M \mid A \cap B) \rightarrow
$$

As $H_{k}(M \mid A \cap B)=0 \quad \forall k \geq n+1$ by assumption, hence we get an exact seguence

$$
\begin{aligned}
& 0 \rightarrow H_{n}(M \mid A \cup B) \stackrel{\Phi}{\rightarrow} H_{n}(M \mid A) \oplus H_{n}(M \mid B)^{\Psi}{ }_{H}(M \mid A \cap B) \\
& \Phi(\alpha)=(\alpha,-\alpha) \quad\left(\text { formally }, \Phi(\alpha)=\left(L_{A \cup B, A}(\alpha), L_{A \cup B, B}(\alpha)\right)\right. \\
& \Psi(\alpha, B)=\alpha+\beta \quad(-11-\quad \Psi(\alpha, \beta)=.
\end{aligned}
$$

We know, by assumption, that

$$
H_{k}(M \mid A)=H_{k}(M \mid B)=0 \quad \forall k \geq n+1
$$

$$
\Rightarrow H_{k}(M \mid A \cup B)=0 \quad \forall k \geq n+1 .
$$

This proves (2) of the lemma for $A \cup B$.
If $x \mapsto \alpha_{x}$ is a section of $\tilde{M}_{R} \rightarrow M$, then by assumption $\exists \alpha_{A} \in H_{n}(M \mid A)$,

$$
\begin{array}{r}
\alpha_{B} \in H_{n}(M \mid B) \text { st. } L_{A, x}\left(\alpha_{A}\right)=\alpha_{x}, \\
\forall x \in A
\end{array}
$$

$$
L_{B, x}\left(\alpha_{B}\right)=\alpha_{x} \quad \forall x \in B .
$$

Consider $\alpha_{A \cap B}^{\prime}:=L_{A, A \cap B}\left(\alpha_{A}\right)$,

$$
\begin{aligned}
& \alpha_{A \cap B}^{\prime \prime}:=L_{B, A \cap B}\left(\alpha_{B}\right) . \text { Clearly, } \\
& L_{A \cap B, x}\left(\alpha_{A \cap B}^{\prime}\right)=\alpha_{x}, L_{A \cap B, X}\left(\alpha_{A \cap B}^{\prime \prime}\right)=\alpha_{x}
\end{aligned}
$$

$\forall x \in A \cap B$.
By the uniqueness assumption we have $L_{A, A \cap B}\left(\alpha_{A}\right)=L_{B, A \cap B}\left(\alpha_{B}\right)$.

$$
\begin{array}{ll}
\| & \prime \prime \\
\alpha_{A \cap B}^{\prime} & \alpha_{A \cap B}^{\prime \prime}
\end{array}
$$

Denote $\alpha_{A \cap B} i=\alpha_{A \cap B}^{\prime}=\alpha_{A \cap B}^{\prime \prime}$.
Cleanly $\Psi\left(\alpha_{A},-\alpha_{B}\right)=0$. By exactness of the $M V$ sequence

$$
\begin{array}{r}
\exists \alpha_{A \cup B} \in H_{n}(M \mid A \cup B) \text { s.t. } \\
\Phi\left(\alpha_{A \cup B}\right)=\left(\alpha_{A,}-\alpha_{B}\right) \Rightarrow \\
L_{A \cup B, x}\left(\alpha_{A \cup B}\right)=\alpha_{x} \quad \forall x \in A \cup B
\end{array}
$$

Uniqueness:
Enough to prove that if

$$
L_{A \cup B, x}(\alpha)=0 \quad \forall x \in A \cup B,
$$

then $\alpha=0$. Indeed, if $L_{A \cup B, x}(\alpha)=0$ $\forall x \in A \cup B$, then $\alpha_{A}=L_{A \cup B, A}(\alpha) \&$
$\alpha_{B}:=L_{A \cup B, B}(\alpha)$ also satisfy $L_{A_{1} x}\left(\alpha_{A}\right)=0 \quad \forall x \in A \quad \& \quad L_{B, x}\left(\alpha_{B}\right)=0$
$\forall x \in B$. By the uniqueness assumption we have $\alpha_{A}=0, \alpha_{B}=0$. But $\left(\alpha_{A},-\alpha_{B}\right)=\Phi(\alpha) \& \Phi$ is injective. $\Rightarrow \alpha=0$. This completes the proof of $\operatorname{step} 1$.
Step 2 well l reduce to proving the lemma to the case $M=\mathbb{R}^{n}$.
If $A \subset M$ is compact $\Rightarrow A=A_{1} \cup . \cup A_{m}$ with $A_{i}=$ compact $\forall i \& A_{i} \subset$ ball chart $\subset \mathbb{R}^{n}$? If the result is true for $A_{1} \cup \ldots \cup A_{m-1}$ \& also for $A_{m} \&$ for union oo $m-1$ compact sets each contained
un $\mathbb{R}^{n} C M$

$$
\left(A_{1} \cup \ldots A_{m-1}\right) \cap A_{m}=\left(A_{1} \cap A_{m}\right)^{m^{n} \mathbb{R}^{n} r M} \cup\left(A_{m-1} \cap A_{m}\right)
$$

then by step 1, the result holds also
for $A_{1} \cup . . \cup A_{m}$. So, by induction on m, it is enough to prove the result for $m=1$, ie. $A \subset$ ball chart $C M$.
Assume that $A \subset \ln t B \subset U \subset M$

By excision: $H_{n}(M, M \backslash A) \cong$

$$
\begin{aligned}
& \cong H_{n}(M \backslash(M \backslash \ln t B), M \backslash A \backslash(M \backslash \ln t B)) \\
& =H_{n}(\ln t B, \ln t B \backslash A) \cong H_{n}(U \backslash A)
\end{aligned}
$$

(the sos here are induced by inclusions).
Step 3
Assume $M=\mathbb{R}^{n}, A \subset M$ is compact
and $A=A_{1} \cup \ldots \cup A_{m}$ with A_{i} convex for all i. If $m=1 \& A=$ convex, then $H_{n}(M \mid A) \xrightarrow{\cong} H_{n}(M \mid X)$ for any $x \in A$. (The inclusion both stoics deffervact onto $\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{\times\}\right) \rightarrow\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash A\right)^{n}$ is a homótopy equivalence). If $A=A_{1} \cup \cup A_{m}$ with A; convex, then use moluction on m and the previous steps.
Step 4
$M=\mathbb{R}^{n}, A \subset \mathbb{R}^{n}$ is an arbitrary compact subset.
Let $\alpha \in H_{i}(M \mid A)$. Let z be a cycle in $S_{i}(M, M \backslash A)$ with $\alpha=[z]$. View z also as a chows in Si (M), and let $C:=$ union of images of all the sing $s x$ in ∂z

So CCM\A. Clearly, C is compact. Since A is compact and C too, $\exists b>0$ s.t. $\forall p \in C$, $g \in A$,
$\operatorname{dist}(p, q) \geq \delta$. Now cover A by finitely many closed bolls centered at points of A and with radius $<\frac{b}{2}$. Denote the union of these balls by K Note that $C \subset M \backslash K \Rightarrow z$ is also a cycle in $S_{i}(M, M \backslash K)$. Put $\alpha_{k}:=[z] \in H_{i}(M \mid K) . \kappa^{K \text { is a finite union }}$ of convex sets (ball) If $i>n$, then by $\operatorname{stup} 3, \alpha_{k}=0 . \Rightarrow$ $\alpha=L_{K, A}\left(\alpha_{K}\right)=0 \Rightarrow H_{i}(M \mid A)=0 \quad \forall i>n$.

Now let $x \mapsto \alpha_{x}$ be a section $\tilde{M}_{R} \rightarrow M$ $\left(M=\mathbb{R}^{n}\right)$. Assume that $\alpha_{x}=L_{A, x}(\alpha) \quad \forall x \in A$ for some $\alpha \in H_{n}\left(\mathbb{R}^{n} \mid A\right)$. We ll show α is unique. Enough to show that if

$$
\alpha_{x}=0 \quad \forall x \Rightarrow \alpha=0 .
$$

CLAIM Assuming $\alpha_{x}=0 \quad \forall x \in A$ implies $\alpha_{x}=0 \quad \forall x \in K$.
Proof of this claim:
If $B C K$ is one of the balls forming K, then $H_{n}\left(\mathbb{R}^{n} \mid B\right) \xrightarrow[L_{B} x]{\cong} H_{n}\left(\mathbb{R}^{n} \mid x\right)$ is an iso $\forall x \in B$.

$$
\Rightarrow \alpha_{x}=0 \quad \forall x \in A \Rightarrow \alpha_{x}=0 \quad \forall x \in B
$$

$\Rightarrow \alpha_{x}=0 \quad \forall x \in K$. This proves the claim.

Now define $\alpha_{k} \in H_{n}\left(\mathbb{R}^{n} \mid k\right)$ as before.

By Step 3 we get $\alpha_{k}=0 \Rightarrow$
$\Rightarrow \alpha=L_{k, \Delta}\left(\alpha_{k}\right)=0$ too. This proves uniqueness of (1) of the lemma.
EXISTENCE
Pick a ball $B(r)$ with int $B(r) \partial A$.
By step 3, \exists a class $\alpha_{B(r)} \in H_{n}\left(\mathbb{R}^{n} \mid B(r)\right)$
with $L_{B(r), x}\left(\alpha_{B(r)}\right)=\alpha_{x} \forall x \in B(r)$.
Put $\alpha_{A}:=L_{B(r), A}\left(\alpha_{B(r)}\right)$.
closed manifold = compact manifold (without boundary)
THEOREM
Let M be a connected non-compact n-manifold. Then $H_{i}(M ; R)=0 \quad \forall i \geq n$.
Proof
See 3.29 in Hatcher.

THEOREM
Homology groups of a compact manifold are finitely generated.
Proof
See Corollaries A. 8 \& A. 9 in Matcher.
COROLLARY
Let M be a closed manifold, of dim n, and assume M is connected.
If M is orientable \Rightarrow torsion $H_{n-1}(M)=0$.
If M is non-orientable \Rightarrow torsion $H_{n-1}(M)=\mathbb{Z}_{2}$
Proof
Recall UCT:

$$
\begin{aligned}
& 0 \rightarrow H_{n}(M) \otimes R \rightarrow H_{n}(M ; R) \rightarrow \operatorname{Tor}\left(H_{n-1}(M) R\right) \rightarrow 0 \\
& \text { torsion } H_{n-1}(M)=\bigoplus_{i=1}^{r} \mathbb{Z}_{l_{i},} l_{i} \geq 2, r \geq 0
\end{aligned}
$$

($r=0$ means torsion $=0$).
Assume $M=$ orientable. If torsion $\left(H_{n-1}(M)\right) \neq 0$,
ie. $r \geq 1$, choose $p=$ prime st. $p \mid l_{1}$ Take $R=\mathbb{Z}_{p}$.

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} \oplus \cdots \rightarrow 0
\end{aligned}
$$

This is impossible.
Assume M is not orientable.
Take $R=\mathbb{Z}_{m}$.
CLAIM

$$
H_{n}\left(M_{i} ; \mathbb{Z}_{m}\right) \cong\left\{a \in \mathbb{Z}_{m} ; 2 a=0\right\}= \begin{cases}0 & \text { o odd } \\ \left\{0, \frac{m}{2}\right\} & \mathbb{Z}_{m} \\ \text { ale }\end{cases}
$$

PROOF
$m=$ odd $\Rightarrow M$ is not \mathbb{Z}_{m}-orientable because $\forall 0 \neq r \in \mathbb{Z}_{m}, \tilde{M}_{r} \approx \tilde{M}$.
$m=\operatorname{even}>2 \Rightarrow M$ is not \mathbb{Z}_{m} orientable.

We get from UCT:

$$
\begin{aligned}
& \text { We get from UCT: } \\
& 0 \rightarrow \underbrace{H_{n}(M)}_{0} \otimes \mathbb{Z}_{m} \rightarrow H_{n}\left(M ; \mathbb{Z}_{m}\right) \rightarrow \bigoplus_{i=1}^{r} \mathbb{Z}_{\operatorname{gcd}(1 ;, m)} \rightarrow 0
\end{aligned}
$$

Take $m=\operatorname{odd} \Rightarrow \operatorname{gcd}\left(l_{i}, m\right)=1$. this holds for all $m=$ odd $\Rightarrow l_{i}=2^{s_{i}} \quad \forall i$.
For $m=$ even, $H_{n}\left(M_{i} \mathbb{Z}_{m}\right) \cong \mathbb{Z}_{2}$,

$$
\Rightarrow r=1 \& l_{1}=2 \Rightarrow \text { torsion } H_{n-1}(M)=\mathbb{Z}_{2}
$$

