We'll apply the above to chain complexes of singular chains

$$
S_{0}(x), S_{0}(x, A) \text {. }
$$

Well also apply it to the cellular chain complex $C_{0}^{c w}(x)$, etc.

SINGULAR HOMOLOGY:

$$
\begin{aligned}
& S_{0}(x ; G):=S_{0}(x) \otimes G \\
& S_{n}(x ; G)=\left\{\sum_{j} n_{i} \sigma_{i} ; b_{i} \in \Delta^{n} \rightarrow x, n \in G\right\} \\
& \partial: S_{n}(x ; G) \rightarrow S_{n-1}(x ; G) \text { has the }
\end{aligned}
$$ same 'formula'

$$
\begin{aligned}
& \partial(g \sigma)=\left.\sum_{j=0}^{n}(-1)^{j} \cdot g \sigma\right|_{\left[v_{i},-, v_{j},-, v_{n}\right]} \\
& \quad \sigma: \Delta^{n} \rightarrow x, g \in G \\
& \partial\left(\sum n_{i} \sigma_{i}\right)=\sum_{i} n_{i} \partial^{\operatorname{old}\left(\sigma_{i}\right)} \\
& \partial^{2}=0
\end{aligned}
$$

$$
H_{n}(x ; G)=H_{n}\left(S_{0}(x ; G)\right)
$$

$A c X$ subspace, $S_{n}(X, A ; G)=S_{n}(x ; G)$

$$
\begin{equation*}
\leadsto H_{n}(x, A ; G) . \tag{n}
\end{equation*}
$$

Reduced homology $\tilde{H_{n}}(x ; G)$ is the homology of the augmented complex

$$
\begin{aligned}
\rightarrow S_{1}(x ; G) \xrightarrow{\partial} S_{0}(x ; G) & \stackrel{\varepsilon}{\rightarrow} G \rightarrow 0 \\
\sum n_{i} x_{i} & \mapsto \sum n_{i}
\end{aligned}
$$

One can show that if x is path-connected, $H_{0}(x, G) \cong G$ via the following iso: $H_{0}(x, G)$ is the 0 -th nomology of

$$
\rightarrow S_{1}(x) \otimes G \rightarrow S_{0}(x) \otimes G \rightarrow 0
$$

Pick $x_{0} \in X$. Identify $S_{0}(x)$ with points:
$b: \rightarrow x$ represents $x \in x$. If x is path connected, then \exists in for any $x_{0} \& x$ st. $\quad m(0)=x_{0}, m(1)=x$.

$$
\partial \partial_{n}=x-x_{0} .
$$

Define $f: g \mapsto\left[g x_{0}\right] \in H_{\rho}(x ; G)$

$$
\begin{aligned}
& (\partial \otimes i d)(m \otimes g)=(\partial m \otimes g)=g\left(x-x_{0}\right)= \\
& =g x-g x_{0}
\end{aligned}
$$

It follows that $\left[g x_{0}\right]$ is independent of our choice of x.
the generators of $S_{0}(x) \otimes G$ are $x \otimes g$, where x is a singular simplex \& $g \in G$. Consequently, $[g x]$ also generate $H_{0}(x ; 6)$. Since $[g x]=\left[g x_{0}\right] \quad \forall x$, this map is surjective.

$$
\begin{aligned}
\varepsilon(\partial m \otimes g) & =\varepsilon(m(1) \otimes g)+\varepsilon(m(0) \otimes(-g)) \\
& =g-g=0
\end{aligned}
$$

ε induces a map on $M_{0}(x ; Q) \bar{\varepsilon}$.

$$
\begin{gathered}
\bar{\varepsilon}(f(g))=\bar{\varepsilon}\left(\left[g x_{0}\right]\right)=\varepsilon\left(g x_{0}\right)=g . \\
g\left(x_{0}\right) \\
S_{0}(x) \otimes G \xrightarrow{\varepsilon} G \\
{\left[g\left(x_{0}\right)\right] \stackrel{\downarrow}{H_{0}}(x ; G)}
\end{gathered}
$$

$\bar{\Sigma}$ is the left inverse of f, so f is injective. $\Rightarrow f$ is bijective.

Most of the homology theory cannils over to $H_{*}(x, A G)$: LES of a pair, homotopy axiom, excision, MV LES $\rightarrow H_{*}(x, A ; 6)$ EXAMPLE is a homology theory
Let $x \neq \phi$ be a space, fix a basepoint $* \in X$. Then $\tilde{H}_{0}(x ; G) \cong H_{0}(x, * ; G)$

Denote by $\pi_{e}(x)$ the set of path-connected components of x. For $c \in \pi_{0}(x)$ denote by $X_{c} \subset X$ the component corresponding to $c \Rightarrow$

$$
H_{0}(x ; G) \cong \bigoplus_{C \in \pi_{0}(x)} H_{0}\left(x_{c} ; G\right) \cong \underset{c \in \pi_{0}(x)}{\bigoplus}
$$

EXAMPLE

$$
\tilde{H}_{k}\left(S^{n} ; G\right)=\left\{\begin{array}{ll}
G & k=n \\
0 & k \neq n
\end{array} \text { if } n \geq 1 .\right.
$$

For $n=0, \quad H_{K}\left(S^{0} ; G\right)=\left\{\begin{array}{cc}0 & k \neq 0 \\ G \oplus G & k=0\end{array}\right.$
Proof
For $n=0, s^{0}=\{-1,1\}$ \& the result follows from what we said before. From now on omit G from the notation $H_{*}(-; G)$.

Assume $n \geq 1$. Consider $\left(B^{n}, \partial B^{n}\right)$! s^{n-1}
$\left(B, \partial B^{n}\right)$ is a good pair
$\left((x, A)\right.$ is a good pair if $D_{\neq A C x}$ Examples: $x=$ at complex, is closed \& A nbhed or of A st. $\phi \neq A \subset X$ a subcomplex. $A C O S$ is a strong deformation retract of $c r$)
Then $H_{*}\left(B, \partial B^{n}\right) \cong \tilde{H}_{*}\left(B / \partial B^{n}\right)$. The same statement holds for homology with coefficients
We ll now use the LES of $\left(\beta^{n}, \partial B^{n}\right)$ \& the theorem about good pairs \& get

$$
\begin{aligned}
& \text { \& the theorem } \tilde{H}_{k}\left(B^{n}\right) \rightarrow \tilde{H}_{k}\left(B^{B^{n}} / \partial B^{n}\right) \xrightarrow{\cong} \tilde{H}_{k-1}(\underbrace{\partial B^{n}}_{S^{n-1}}) \rightarrow \tilde{H}_{k-1}\left(B^{n}\right) \rightarrow \\
& \\
& \Rightarrow \tilde{H}_{k}\left(S^{n}\right) \cong \tilde{H}_{k-1}\left(S^{n-1}\right) . \\
& \Rightarrow \tilde{H}_{k}\left(S^{n}\right) \cong \ldots \tilde{H}_{k-n}\left(S^{0}\right)= \begin{cases}G & k=n \\
0 & k \neq n\end{cases}
\end{aligned}
$$

How to see this is more explicitly? what are the chain level representatives
of the elements of $\tilde{H}_{n}\left(S^{n} ; G\right)$?
Consider $G_{0}: \Delta^{n} \rightarrow \Delta^{n} / \partial \Delta^{n}$ the quotient map, viewed here as an n-dim simplex in the space $\Delta^{n} / \partial \Delta^{n}\left(\approx s^{n}\right)$.
Note that b_{0} is an n-cycle in the group $\left.S_{n}\left(\frac{\Delta^{n}}{\partial \Delta^{n}}\right)^{*}\right)$, where $* \in \Delta^{n} / \partial \Delta^{n}$ corresponds to the points of $\partial \Delta^{n}$.
(1) One can show that $\left[\sigma_{0}\right] \in H_{n}\left(\Delta^{n} / \partial \Delta \Delta^{n} *\right)$

$$
\cong H_{n}\left(S^{n}, *\right) \cong \widetilde{H_{n}}\left(S^{n}\right) \cong \mathbb{Z}
$$

is a generator. (Example 2.23, page 125,
(2) Consider the following map Hatcher)

$$
\begin{aligned}
& G \longrightarrow H_{n}\left(\Delta^{n} / \partial \Delta^{n}, * ; G\right) \\
& \psi \\
& g \longmapsto\left[g \sigma_{0}\right]
\end{aligned}
$$

this is an iso.

